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Abstract

Emergence of triazole resistance has been observed in Aspergillus fumigatus over the past decade including Africa. This review summarizes the
current published data on the epidemiology and reported mechanisms of triazole-resistant Aspergillus fumigatus (TRAF) in both environmental
and clinical isolates from Africa. Searches on databases Medline, PubMed, HINARI, Science Direct, Scopus and Google Scholar on triazole resis-
tance published between 2000 and 2021 from Africa were performed. Isolate source, antifungal susceptibility using internationally recognized
methods, cyp51A mechanism of resistance and genotype were collected. Eleven published African studies were found that fitted the search
criteria; these were subsequently analyzed. In total this constituted of 1686 environmental and 46 clinical samples. A TRAF prevalence of 17.1%
(66/387) and 1.3% (5/387) was found in respectively environmental and clinical settings in African studies. Resistant to itraconazole, voriconazole,
and posaconazole was documented. Most of the triazole-resistant isolates (30/71, 42.25%) were found to possess the TR34/L98H mutation in the
cyp51A-gene; fewer with TR4s/Y121F/T289A (n = 8), F46Y/M172V/E427K (n = 1), G54E (n = 13), and M172V (n = 1) mutations. African isolates
with the TR34/L98H, TR46/Y121F/T289A and the G54E mutations were closely related and could be grouped in one of two clusters (cluster-B),
whereas the cyp51A-M172V mutation clustered with most cyp51A-WT strains (clusterA). A single case from Kenya shows that TR34/L98H from
environmental and clinical isolates are closely related. Our findings highlight that triazole resistance in environmental and clinical A. fumigatus is
a cause for concern in a number of African countries. There is need for epidemiological surveillance to determine the true burden of the problem
in Africa.

Lay Summary

Emergence of triazole resistance has been observed in Aspergillus fumigatus. TRAF was found from environmental (17.1 %) and clinical (1.3%)
settings in Africa. We highlighted that triazole resistance in environmental and clinical A. fumigatus is a cause for concern in a number of African
countries.
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Introduction the triazole resistance prevalence in A. fumigatus varies be-
tween 3.2% and 36.3% depending on the country,® centre and
underlying condition such as cystic fibrosis, which is associ-
ated with higher triazole resistance prevalence.”-® Resistances
to azole in Aspergillus are much more prevalent in South East
Asia than anywhere else, with environmental resistance rates
of 65% (77/119).°

The resistance mechanisms behind TRAF, in both environ-
mental and clinical settings, are mutations in the gene involved
in the biosynthesis of ergosterol, the cypS1A gene.'%!! From
this, mutations L98H and Y121F/T289A combined with tan-
dem repeats of 34 bp (TR34) and 46 bp (TRug), respectively,

The emergence of triazole resistance, including multi-triazole
resistance in Aspergillus fumigatus (TRAF), is a public health
and clinical problem worldwide, leading to an increase of
treatment failures in patients with aspergillosis.'~ Further-
more, in some patients the acquired azole resistance mecha-
nisms emerged during therapy.* TRAF is defined as in vitro
resistance of A. fumigatus to at least one triazole antifungal
agent.’ According to their phenotypic profiles these isolates
are mainly grouped to more than one azole (multi-triazole
resistant) or to all clinically available azoles (pan-triazole
resistant).’ Epidemiological data gathered to date show that
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have been frequently associated with triazole resistance.' Tri-
azole resistance can occur through two routes, in patients re-
ceiving long-term triazole therapy! and through exposure of
A. fumigatus to triazole compounds in the environment.'?

The widespread use of azole fungicides (14a-demethylase
inhibitors) in agricultural fields has been related to TRAF in
Africa, yet the information provided was scarce.'®'* For in-
stance, the amount of azole fungicides sold use in agricul-
ture was respectively 6 350 kg and 907 kg in Kenya and
Tanzania in 2019.'51¢ Similarly, the epidemiological data re-
lated to TRAF is limited and most likely underestimated in
Africa.'*17-18:19 Hence, to gain more insight into the occur-
rence of TRAF in Africa, we performed a systematic review
on current epidemiological findings and the mechanisms of
multi-TRAF in both environment and clinical setting of pub-
lished cases from 2000 to 2021.

Methods

Search strategy

We conducted a systematic search using the databases
Medline, PubMed, HINARI, Science Direct, Scopus and
Google Scholar for studies on TRAF cases published
between 2000 and 2021 in Africa; according to the
PRISMA directions indexed in international electronic
databases (http://www.prisma-statement.org/documents/
PRISMA_2020_checklist.pdf). The methodological search
was performed using the following medical subject headings
(MeSH) terms: ‘triazole resistance’, ‘Aspergillus fumigatus’,
‘Aspergillosis’, ‘Environment’, ‘Epidemiology of aspergillosis’,
“TR34/L98H mutations’, “TR4s/Y121F/T289A mutations’,
‘Antifungal resistance’, ‘Africa’. The Boolean operators ‘AND’
and ‘OR’ were used to combine two or three terms. Indexed
original articles in English and French of any design and
sampling strategy were used for further analysis (Fig. 1).

Study eligibility criteria
Eligible studies included must have reported the epidemiol-
ogy of TRAF in Africa region. Also, studies that did ad-
dress this subject, duplicate publication of the same article,
review literatures, meta-analysis/systematic, and narrative re-
views were excluded. From obtained articles, an additional
search for short tandem repeat (STR) typing results in A. fu-
migatus isolates from Africa was conducted for STR typing
analysis. A phylogenetic tree based on found publicly avail-
able microsatellite markers (STRAf 3A, 3B, 3C, 4A, 4B and
4C)?0 data was performed and visualized (Euclidian similar-
ity and Ward’s minimum variance linkage method) using the
statistical computing and graphics software R (v4.0.3) as pre-
viously described.?!-23

Triazole-resistant phenotype was considered when at
least one minimum inhibitory concentration (MIC) value
was above the EUCAST resistance clinical breakpoint
(voriconazole > 1 mg/l, itraconazole > 1 mg/l, posacona-
zole > 0.25, mg/l).2*

Data extraction

The three authors compiled a database from the electronic
searches and the following items were extracted: The first
author’s full name, year of publication, location (country
and city), sample size, sample origin and type (clinical or
environmental), the number of fungi growth, number of
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Lecmds identified through databases
searching for studies published
between 2000 and 2021.

Records screened for african
article (n=264)

Records excluded after title,
abstract screening and duplicates
removed (n=253)

Full-text article assessed for
eligibility and quantitative
synthesis (n=11)

Figure 1. Flow diagram describing search strategy for triazole resistance
in A. fumigatus isolates in Africa.

positive A. fumigatus samples, number of reported A. fumi-
gatus isolates, type of triazole susceptibility testing methods,
azole fungicides used and cyp51A allele (s). Furthermore, the
extracted data were matched, and inconsistencies between re-
viewers were discussed to reach an agreement.

Results
Epidemiology of TRAF in Africa

The literature search revealed 11 studies from 7 African coun-
tries with reports on TRAF between 2000 and 2021 (Table 1).
Overall, we summarize data from 1686 environmental and
46 clinical samples for analysis. From 46 clinical samples, 44
were suppurative otitis media samples and 2 were sputum
samples; there were no brochoaveolar lavage or sinus sam-
ples. The environmental substrates were mostly soils followed
by plant debris and effluent wastewater. In total, 1732 sam-
ples were collected of which 749 (43.2%) samples had posi-
tive fungal growth on Sabouraud dextrose agar (Table 1). Of
the 1732 samples, 1686 were environmental and 46 clinical
samples. Furthermore, 387 samples (51.7%), including envi-
ronmental (n = 380) and clinical samples (n = 7), grew A. fu-
migatus strains (Table 2). All 112 non-fumigatus Aspergillus
species (14.9%) such as A. niger (n = 50), A. flavus (n = 37),
A. terreus (n = 20), and A. nidulans (n = 5) were recovered
from the soil.

Among Aspergillus isolates, triazole resistance mechanisms
were intensively studied in A. fumigatus (n = 545). Only one
study reported the resistant mechanism in non-fumigatus As-
pergillus species (n = 89) including A. niger, A. flavus, and
A. terreus across Africa.!”” Overall, the reported prevalence
of TRAF in environmental and clinical isolates was 17.1%
(66/387) and 1.3% (5/387) respectively in Africa. Analysis per
country studies (Fig. 2) reported that high numbers of environ-
mental TRAF were present in Tanzania (37% and 52%)'7-18
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Figure 2. Geographic distribution of reported triazole-susceptible and triazole-resistant A. fumigatus environmental and clinical isolates from African
countries. Pie charts depict prevalence of triazole-susceptible ( = green) and triazole-resistant isolates harboring cyp57A gene mutations

(TR34/L98H = red, TR4s/Y121F/T289A = yellow, M172V = purple, G54R = brown, F46Y/M172V/E427K = blue, not performed = gray) from each
reported epidemiological study. Letters within pie charts represent the origin of the studied isolates; ‘'E’ for environmental and ‘C’ for clinical isolates.

The figure was adapted using a free license map from mapchart.net.

and Kenya (27%),"” whereas Nigeria and Burkina Faso sam-
ples harboured only 2% resistant isolates (Table 2). Concern-
ing clinical isolates, all analysed samples report resistance to
triazoles, yet the number of analysed samples was low limiting
prevalence determination, with only two isolates from Kenya
(2/2 TRAF)'3 and five from Tanzania (5/5 TRAF) all carrying
TR34/L98H resistance allele.?

Molecular determination of the triazole resistance
mechanisms in Africa

Five different cyp51A mutations were reported in Africa,
namely the TR3/L9SH, TRus/Y121F/T289A, GS4E,
F46Y/M172V/E427K and M172V. From the 11 included
studies, 4 undertook sequencing of the cypS1A gene and
reported TRAF isolates harbouring TR34/L98H (n = 30)
and TR4¢/Y121F/T289A (n = 8) mutations.'3:17-18:25 Single
cases of TRAF harbouring either a F46Y/M172V/E427K
(n = 1), G54E (n = 13), or M172V (n = 1) mutations
were reported respectively (Table 2).'*18:22 In total, 66
environmental and § clinical TRAF culture-positive samples
were reported. Of these, 25 environmental (35.2%) and 5
clinical samples (7%) harboured isolates with a TR34/L98H
mutation. The G54E triazole resistance mutation was found
in 18.3% of samples (13/71) from Tanzania. Furthermore,
the GS4E mutation resistance mechanism coexisted with
TR34/L98H in five samples originating from tree trunk hol-
lows and two parks areas. Moreover, a single soil sample
from the same parking area harboured TRAF isolates (n = 7)
was carrying GS4E, TR34/L98H and TRu4s/Y121F/T289A

mutations.'®

Mycological characteristics of triazole-resistant

A. fumigatus isolates

All 71 triazole-resistant isolates were confirmed to be resis-
tant to at least 1 of the 4 medical triazoles tested specifi-
cally itraconazole (ITC), voriconazole (VRC), posaconazole
(POS), and isavuconazole (ISA) (Table 3). Antifungal suscep-
tibility (AST) was performed using EUCAST (n = 6) and CLSI
M38-A2 (n = 5) recommendations. Strains with TR34/L98H
mutations had high VRC MICs > 16 mg/l in Tanzania
(n = 22), while MICs for ITC (n = 5) were high (>32 mg/l)
in Tanzania (n = 3) and Kenya (n = 3).!7>!® TRAF isolates
from Tanzania harbouring the G54E (n = 13) mutation pre-
sented with high ITC (>16 mg/l) and POS MICs (>2 mg/l)
with low VRC (0.29 mg/l) and ISA (0.2 mg/l) MICs.'® The
TR46/Y121F/T289A (n = 4) isolates from Tanzania revealed
high VRC-MIC of >16 mg/l.'8 In Burkina Faso, one isolate
(2%,1/51), from an urban location, was confirmed as resistant
to voriconazole (MIC 2 mg/l), isavuconazole (MIC = 4 mg/l),
and posaconazole (MIC = 0.5 mg/l), but susceptible to itra-
conazole (MIC = 1 mg/l).'"* In Nigeria, one sample of urban
origin with a M172V mutation presented elevated MICs to
ITC (4 mg/l) and VRC (2 mg/1).?? A study from South Africa
reported that A. fumigatus (n = 9) showed no increased resis-
tance to any of the tested drugs in the wastewater samples.?®

Genetic diversity of triazole-resistant A. fumigatus
isolates in Africa

Based on short tandem repeats A. fumigatus analysis, iso-

lates were clustered in two different groups, group A and
B at a genetic height of 11.5 (Fig. 3). Most TRAF isolates
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Table 3. /n vitro antifungal susceptibility profile of triazole-resistant A. fumigatus isolates in Africa.

EUCAST MIC (mg/l) and CLSI
Triazole drugs

Authors Years Source Isolates n ITC VRC ISA POS
Chowdhary et al.” 2014 Environment TR34/L98H 11 16 3.52 8 1.13
TR46/Y121F/T289A 4 1.68 16 8 0.42
Sharma et al.!$ 2015 Environment GS4E 13 16 0.29 0.20 2.14
TR34/L98H 11 16 4.9 8 1.1
TR46/Y121F/T289A 4 1.68 16 8 0.42
Mushi et al.? 2016 Clinical TR;4/L9SH 5 32 1,74 NT 1
Kemoi et al.13 2018 Environment and clinical TR34/L98H 3 32 4 NT 2
Resendiz-Sharpe et al.?? 2021 Environment M172V 1 4 2 NT 0.25
Yerbanga et al.!* 2021 Environment F46Y/M172V/E427K 1 1 2 4 0.5

Triazole-resistant phenotype was confirmed if at least one MIC value was above the EUCAST resistance clinical breakpoint (voriconazole > 1, itraconazole > 1,

posaconazole > 0.25, mg/l).

NT = not tested; ITC = itraconazole; VRC = voriconazole; POS = posaconazole; ISA = isavuconazole.

harbouring a cypS51A resistance mechanism grouped together
in clade B, while most triazole susceptible isolates were dis-
tributed mostly in clade A. The cyp51A-M172V mutation,
originating from an isolate from Nigeria, was the only cyp51A
mutation located in clade A. Based on our phylogenetic anal-
ysis, African TRAF isolates with the most commonly reported
cypS1A gene mutations are closely related (Fig. 3).

Discussion

Triazole antifungal agents are the workhorse antifungals for
the treatment of all forms of aspergillosis, and the only orally
active class. Given the global emergence of TRAF around the
world, further environmental and clinical monitoring is re-
quired in order to fully appreciate the threat of TRAF, par-
ticularly in African countries where this information is lim-
ited and the burden of fungal diseases is a huge public health
problem.!+1°

Many studies from different areas of the world such as
the European,”?’” Asian,”®?° and American regions*> have
reported multiple sources of TRAF from both environment
and clinical samples. Here, we reviewed all published cases of
TRAF from environmental and clinical samples from Africa.
We reveal that the prevalence of TRAF was 17.1% in the envi-
ronmental samples and 1.3% in A. fumigatus culture positive
clinical samples growth. When analysed by region, epidemio-
logical environmental data from countries in Western Africa
(Nigeria, Benin and Burkina Faso) present with none to low
triazole resistance in A. fumigatus positive samples with
an average prevalence of 1.6% (2/127). In contrast, a high
triazole-resistance prevalence was observed in Eastern African
countries of 31% (64/203), where Tanzania (37% and 52%)
and Kenya (27%) reported the highest prevalence of TRAF
among A. fumigatus culture-positive samples in Africa.!”"’
This higher prevalence in both East African countries may be
due to the intense flower farming with extensive use of azole
fungicides and substantial international trade, which can
increase the risk of selection and dissemination of resistant
isolates. Chowdhary and colleagues reported a genetic relat-
edness of Tanzanian TRy4s/Y121F/T289A strains to Dutch
isolates, and the TR34/L98H isolates were identical to the
Indian TR34/L98H genotype. These similarities in molecular
epidemiology suggest possible migration of isolates harbour-
ing resistance traits from distant locales.>’ In Kenya, although

the prevalence of TRAF was higher in fungicide-exposed soil,
TRAF was also present in fungicide-naive soil samples.'® This
finding implies that TRAF might spread locally from areas
of fungicide use to places where fungicides have not been
used. Nigeria and Burkina Faso samples harboured only 2%
resistant isolates, whereas no resistant strains were evident
in their neighbouring countries (Cameroon and Benin) or in
South Africa. Globally, azole fungicides comprise increasing
proportion of all fungicides used (~16% in 2020).3!

Most positive fungi cultures (n = 387) found A. fumigatus
as a common Aspergillus species (n = 545) in Kenya, Benin
and Tanzania'”>'*?? and non-fumigatus Aspergillus such as
A. niger (n = 50) and A. flavus (n = 37). Similar results in
other countries have reported A. fumigatus as a common As-
pergillus species.” In contrast, Campbell and colleagues re-
ported non-fumigatus Aspergillus such as A. niger (42.7%)
and A. flavus (31.6%) to be mostly isolated in Nigeria.>> How-
ever, this was not the case in the study from Resendiz-Sharpe
and colleagues where A. fumigatus was the most frequent
species cultured (n = 46), including one TRAF isolate.?? Their
study was performed in a different region of Nigeria (Lagos
Island) during the time of year when the season is good for
fungi growth, which might be the reason for the observed
differences.

Cross-resistance between ITC, VRC, and POS is common in
71.8% (51/71) of isolates. Most of the triazole-resistant iso-
lates reported in Africa were found to possess the TR34/L98H
mutation in the cyp51A-gene (30/71, 42.25%), a similar
proportion reported previously in the Latin American,?
European33-3* and Asia.”»3 All African TRAF isolates
harboring the TR34/L98 mutation were resistant to itracona-
zole. This is of concern as itraconazole is only authorized
triazole-antifungal among most countries having investigated
epidemiology of TRAF (Burkina Faso, Cameroon, Kenya,
and Tanzania). The TRj34/L98H mutation is worldwide
distributed and is commonly associated with a pan-triazole
resistance phenotype to all clinical azoles and it has spread
worldwide.3¢37 In Africa, A. fumigatus isolates harboring
the TR34/L98H resistance mechanism were mostly recovered
from the environment. Only one proper study has analyzed
clinical samples in Africa with reports of TR34/L98H mu-
tations.”’ Additional clinical studies are warranted to show
if TR34/L98H resistance mechanism is present in clinical
isolates in more countries.
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Country/location Source 3A B ac 4A 4B 4C Trizznle Gp3lA
phenotype sequencing
A 1 Cameroon/Simbock Environmental 24 29 44 3 3 4 Susceptible WT
1 Benin Environmental 22 29 40 6 6 5 Susceptible WwT
Cameroon/Simbock Environmental 24 21 44 4 3 4 Susceptible WT
Cameroon/Eloundem  Environmental 23 21 43 3 3 4 Susceptible WwT
Cameroon/Mbandoumou Environmental 16 21 44 6 3 4 Susceptible WT
Cameroon/Bambui Environmental 22 20 43 7 8 7 Susceptible WT
Benin Environmental 32 21 38 8 9 6  Susceptible WwT
Cameroon/Bambui Environmental 26 19 42 3 9 4 Susceptible WwT
Nigeria Environmental 16 24 34 4 11 8 Resistant Ml72v
Cameroon/Bambui Environmental 1 9 32 8 8 8 Susceptible WT
_E Cameroon/Mbingo Environmental 3 11 34 7 T 8  Susceptible WwT
Cameroon/Mbalgong  Environmental 6 11 34 6 9 10 Susceptible WT
Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WwT
Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WT
| Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WT
- Cameroon/Mbalgong  Environmental 6 11 34 6 6 10 Susceptible WwT
Cameroon/Simbock Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Simbock ~ Environmental 6 11 34 6 6 10 Susceptible wT
Cameroon/Simbock Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Simbock Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Simbock Environmental 6 11 34 6 6 10 Susceptible WT
Cameroon/Mbalgong  Environmental 6 10 34 6 6 10 Susceptible WT
Cameroon/Simbock Environmental 6 11 33 6 6 10 Susceptible WT
Cameroon/Simbock ~ Environmental 6 11 33 6 6 10 Susceptible WT
Cameroon/Mbalgong  Environmental 4 11 34 6 6 10 Susceptible WT
_[ Cameroon/Mbalgong ~ Environmental 6 10 34 6 6 10 Susceptible WT
Cameroon/Makepe Environmental 6 12 36 6 6 10 Susceptible WT
(- Nigeria Environmental 13 17 34 4 6 16  Susceptible WT
Cameroon/Mbalgong  Environmental 16 7 30 3 3 4 Susceptible WwT
Cameroon/Eloundem  Environmental 15 8 31 3 3 4 Susceptible WT
Cameroon/Eloundem  Environmental 18 8 30 3 3 4 Susceptible WT
Cameroon/Eloundem  Environmental 14 11 34 4 3 4 Susceptible WT
Cameroon/Simbock Environmental 6 7 31 3 3 4 Susceptible WwT
Cameroon/Eloundem  Environmental 11 T 31 3 3 4 Susceptible WT
Cameroon/Eloundem  Environmental 11 3 31 3 3 4 Susceptible WT
Cameroon/Eloundem  Environmental 11 3 36 3 3 4 Susceptible WT
Cameroon/Simbock Environmental 14 6 50 3 3 4 Susceptible WT
Cameroon/Eloundem  Environmental 16 8 44 3 3 4 Susceptible WT
Cameroon/Eloundem  Environmental 26 12 36 3 3 4 Susceptible wT
Cameroon/Eloundem  Environmental 35 7 30 3 3 4  Susceptible WT
Cameroon/Mbandoumou  Environmental 25 8 31 2 2 4 Susceptible WT
Cameroon/Eloundem  Environmental 26 8 30 2 2 4 Susceptible wT
Cameroon/Babanki Environmental 26 9 32 2 2 4  Susceptible WT
Cameroon/Eloundem  Environmental 25 T 30 3 3 3 Susceptible WT
Cameroon/Mbingo Environmental 25 7 31 3 3 4  Susceptible WT
Cameroon/Eloundem  Environmental 35 7 30 3 3 4 Susceptible WT
Tanzania’/Moshi Environmental 7 10 8 9 5 5 Susceptible WT
B TanzaniaMoshi Environmental 7 10 8 9 5 5 Susceptible WT
Tanzania/Moshi Environmental 23 9 8 9 9 5 Susceptible WT
] i ‘Tanzania Environmental 23 9 8 9 9 5  Susceptible WT
Tanzania/Moshi Environmental 37 21 22 23 9 5 Resistant GS54E
I Kenya/Nairobi clinical 28 9 6 8 10 18 Resistant TR3, L98H
—':' Kenya/Nairobi Environmental 28 9 6 8 10 18 Resistant TR, L98H
Tanzania’/Moshi Environmental 31 9 10 8 10 28 Resistant TR, L98H
CameroonMbalgong  Environmental 19 11 34 6 6 10 Susceptible WT
Cameroon/Eloundem  Environmental 32 7 30 7 3 11 Susceptible WT
Cameroon/Mbandoumou Environmental 20 15 38 8 9 10 Susceptible WwT
Cameroon/Bambui Environmental 20 13 38 8 9 10 Susceptible WT
Nigeria Environmental 27 16 34 6 8 8  Susceptible WT
Kenya/Nairobi Environmental 32 9 38 8 10 18 Resistant TR34L98H
Benin Environmental 45 18 36 9 10 12 Susceptible WT
_E Nigeria Envionmental 47 17 34 10 10 S  Susceptible WT
Nigeria Environmental 28 16 36 13 6 8  Susceptible WT
Tanzania’/Moshi Environmental 33 11 22 8 14 10 Resistant  TR4/Y121F/T289A
, 2 . _! Tanzania Environmental 33 11 22 8 14 10 Resistant  TRu/Y121F/T289A
15 10 5 0

Height

Figure 3. Genetic relationship and characteristics of selected A. fumigatus isolates according to short tandem repeats typing in seven African countries.

Eastern African countries have reported intense flower
farming with the extensive use of azole fungicides mainly
14a- demethylase inhibitors?® in Kenya, Tanzania, and Nige-
ria, with a use per area of cropland of 0.43, 0.1, and 0.1 kg per
used-hectare.'3-1%:3% This could favor the selection of azole-
resistant isolates of A. fumigatus with cross-resistance to med-

ical azoles.*>>*' In contrast, studies from Benin and Burkina
Faso refer to the use of pesticides, but no data concerning used
amounts per area could be found.*>»*3 Triazole resistance due
to a mutation at codon 54 in the cyp51A gene of A. fumi-
gatus has been reported among patient isolates on long-term
azole therapy for chronic pulmonary aspergillosis.>*** G54
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substitution is the most described in patients after treat-
ment with itraconazole or posaconazole.*®>4” In this study, the
13 Aspergillus fumigatus isolates with a G54E mutation in
Tanzania were reported from environmental setting. Similarly,
Prigitano and colleague reported only one environmental iso-
late of GS54E mutation in Italy.*® Furthermore, TR34/L9SH
(n = 5) were the only resistant mechanism found in clinical pa-
tient in Africa.?’ It may be anticipated that long-term exposure
of saprobic A. fumigatus to the triazole fungicides used exten-
sively in agriculture may induce selection of G54, TR34/L98H
and TR46/Y121F/T289A mutants in the environment.

The remaining cyp51A  mutations were  the
F46Y/M172V/E427K and M172V in one isolate from
Burkina Faso and Nigeria respectively. Isolates with a
F46Y/M172V/E427K mutation have been reported for in
both clinical and environmental strains in Europe and Aus-
tralia since 2001.*° The F46Y/M172V/E427K amino acid
substitutions are located in non-conserved areas, mainly at
the surface of the protein, and they were predicted neither
to interact with triazole compounds nor to affect structural
integrity.*” This suggests that the mutations found might play
no role or only a minor role in reduced triazole susceptibili-
ties and other mechanisms are responsible for conferring the
observed triazole-resistant phenotype.

Our phylogenetic analysis revealed that the TR34/L98H,
TR46/Y121F/T289A and GS54E cypS5S1A-mediated mecha-
nisms were closely related (cluster B), inferring that these
isolates have developed from a reduced set of clonally
related strains (ancestors) with shorter genetic distances
among themselves, particularly in the TR34/L98H and
TR46/Y121F/T289A mutations, as it has been previously sug-
gested.?2%0 This was not the case for the cypS1A-M172V mu-
tation located in cluster A where most cypS1A-WT strains
were found with greater genetic diversity than cluster B, where
the rest of TRAF isolates located. Interestingly, a study from
Kenya shows a close genetic relationship between environ-
mental and clinical isolates with TR34L98H mutations, fur-
ther supporting the link between environment-patient trans-
mission in this country.'? This result is in agreement with those
of previous works showing the similar findings.3:11-12-2244

Both itraconazole and voriconazole are used clinically in
many countries in Africa. Resistance in A. fumigatus is prob-
lematic as patients infected with these strains will fail ther-
apy. Fungal culture is often undertaken in university and pri-
vate hospitals in most countries in Africa, but susceptibility is
rarely undertaken for Aspergillus spp. Given the high levels
of azole resistance encountered in East Africa, this procedure
probably needs be implemented, at least for regular surveil-
lance purposes.

Conclusion

This review shows a high TRAF prevalence (17.1%) in Africa,
with most of the data from just Tanzania and Kenya. Five mu-
tations in the cyp51A gene have been reported as the resis-
tant mechanism in Africa. The isolates tested revealed multi-
triazole resistance to ITC, VRC, and POS with elevated MICs.
Our findings highlight that triazole resistance in environmen-
tal and clinical A. fumigatus is a cause for concern in African,
thus highlighting the dire need for epidemiological surveil-
lance studies in a region with significant population of tuber-
culosis patients.
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