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Aim: To evaluate the activity of miltefosine (MFS), in its free form or loaded-alginate nanoparticles (MFS-
AN), alone or combined with voriconazole (VRC) on Aspergillus fumigatus and Aspergillus flavus. Materials
& methods: A broth microdilution assay was used for the susceptibility testing of Aspergillus isolates, and
the antifungal efficacy was assessed using the aspergillosis model in Galleria mellonella larvae. Results:
The in vitro synergistic effect of MFS with VRC was observed only against A. fumigatus, whereas both
combined therapies (MFS + VRC and MFS-AN + VRC) showed synergism in reducing the larval mortality
rate and fungal burden in the larvae infected by A. fumigatus and A. flavus. Conclusions: MFS and MFS-AN
combined with VRC may be an important strategy for improving antifungal therapy against aspergillosis.
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Aspergillus spp. are important human pathogens, and the most common species is Aspergillus fumigatus in ∼90%
of aspergillosis cases, followed by Aspergillus flavus, Aspergillus niger, Aspergillus nidulans and Aspergillus terreus [1,2].
Despite the higher global prevalence of A. fumigatus, there is an increase in the number of clinical cases of aspergillosis
by A. flavus, mainly in tropical countries [3]. Aspergillosis is often associated with opportunistic infections [4] and
the severe form, invasive pulmonary aspergillosis (IPA), leads to a high mortality rate of 50–95% [1].

The first-line treatment used for aspergillosis is voriconazole (VRC), but other antifungals can be employed,
including amphotericin B deoxycholate (AMB) and its lipid formulations, itraconazole, posaconazole, isavuconazole
and echinocandins [5]. Despite the effectiveness of azoles in IPA treatment, the number of resistant isolates has
increased in recent years [6], and A. flavus has a known antifungal tolerance profile, with epidemiological cut-off
values higher than those observed for A. fumigatus [3]. Other limitations are related to the conventional antifungals,
such as a narrow spectrum of action, multiple side effects, drug–drug interactions, low bioavailability and the
unavailability of some antifungals in many countries [5,7]. In this regard, resistance and antifungal limitations may
result in high rates of therapeutic failures, [5] and in view of this, it is necessary to search for alternative strategies
for aspergillosis treatment.

Miltefosine (MFS) is currently used in the treatment of skin metastases in patients with breast cancer and
leishmaniasis [8]. Previous studies have demonstrated other pharmacological activities of MFS, including antifungal
action against Aspergillus and other fungal species [8,9] and an in vitro synergistic effect when combined with
azoles (VRC and posaconazole) against 20 pathogenic filamentous fungi [10–13]. However, MFS presents several
toxic effects when orally administered [8], and encapsulation may be used to improve its distribution and reduce
side effects [14]. Previously, our research group developed an alginate-based nanocarrier for MFS encapsulation
(MFS-AN) that promoted a sustained drug release and reduced its toxicity, while maintaining antifungal efficacy
in vitro and in vivo against Candida and Cryptococcus spp. [15–17].

The aim of this study was to evaluate the synergistic effect of MFS, in its free from (as solution) and encapsulated
in alginate nanoparticles (MFS-AN), against A. fumigatus and A. flavus in vitro and in vivo using a Galleria
mellonella infection model.
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Materials & methods
Clinical isolates
Aspergillus fumigatus ATCC 16913 and other clinical isolates of A. fumigatus (n = 10) and A. flavus (n = 10) were
maintained at -80◦C in brain and heart infusion broth (Becton Dickinson and Company, NV, USA) with 20%
glycerol, recovered on potato dextrose agar (Becton Dickinson and Company) and subcultured in the same medium
at 35◦C for 7 days before each assay.

Drugs
AMB and VRC (both from Sigma-Aldrich, MO, USA) were dissolved in DMSO and MFS (Cayman Chemical Co.,
MI, USA) in sterile distilled water to obtain stock solutions 100-times concentrated that were maintained at -20◦C.
MFS-loaded alginate nanoparticles (MFS-AN) were produced as previously described [15], and the lyophilized
powder was reconstituted with phosphate-buffered saline (PBS), pH 7.4, for the experiments.

Antifungal susceptibility assay
The susceptibility of Aspergillus spp. clinical isolates to standard antifungals and MFS was determined using the
broth microdilution technique [18]. The minimum inhibitory concentration (MIC) was defined as the lowest
drug concentration that inhibited 50% of the fungal growth (MIC-2); except for AMB, that was defined as the
minimum concentration able to inhibit 90% of fungal growth (MIC-0). The antifungal susceptibility profile of
clinical isolates was defined using the epidemiological cut-off values as previously described [19]. In addition, MIC50

and MIC90 values were determined and defined as the concentrations that inhibited 50 and 90% of all clinical
isolates, respectively [19].

Using an inverted optical microscopy (magnification of 200×, DM750 Leica, São Paulo, Brazil), the minimum
effective concentration (MEC) was determined as the lowest concentration that induced morphological alterations
as thinner or shorter hyphae and alteration of the branching pattern, and untreated cells were used as a fungal
growth control [20]. MEC50 and MEC90 values were defined as the concentrations that altered the fungal hyphae
of 50 and 90% of all clinical isolates, respectively.

After MIC and MEC readings, a 10-μl aliquot of the inhibitory concentrations was plated on the drug-free
potato dextrose agar plates and incubated at 35◦C for 24 h to determine the minimum fungicidal concentration
(MFC), defined as the lowest concentration that killed >99% of initial inoculum of fungal cells. The effect was
considered fungicidal when MFC was ≤4× MIC; otherwise, the effect was considered fungistatic [21]. Afterward,
MFC50 and MFC90 were determined and defined as the concentrations that killed the fungal cells of 50 and 90%
of all clinical isolates, respectively.

Checkerboard assay
The in vitro combination of VRC and free MFS was evaluated on two representative clinical isolates of Aspergillus
(A. fumigatus 1220 and A. flavus 998) using the checkerboard assay that several drug concentrations were combined
for MIC determination, defined as the lowest drug concentrations in combination that inhibited 50% of the
fungal growth by visual inspection [22]. The fractional inhibitory concentration index (FICI) was then calculated
as the sum of fractional inhibitory concentration (FIC) of the VRC (MICcombined/MICalone) with FIC of the MFS
(MICcombined/MICalone). FICI ≤0.5 indicates a synergistic effect; FICI >0.5 and <4 corresponds to indifference
and FICI ≥4 indicates antagonism [22].

Antifungal activity of miltefosine using G. mellonella model
Larvae of G. mellonella (length 2–2.5 cm and weight 150–200 mg) were infected with conidia of A. fumigatus 1220
or A. flavus 998, and monotherapies with VRC, MFS or MFS-AN and combined therapies with MFS + VRC or
MFS-AN + VRC were assessed for evaluation of antifungal efficacy.

For infection, 10 μl of a conidia suspension of 1 × 107 CFU/ml was inoculated into the last left proleg of the
larvae. After 30 min, the larvae were treated with the following treatment regimens: AMB (20 or 40 mg/kg), VRC
(10 or 20 mg/kg), MFS (20 or 40 mg/kg), MFS-AN (100 mg/kg); or the combinations MFS (20 mg/kg) + VRC
(10 mg/kg) or MFS-AN (100 mg/kg) + VRC (10 mg/kg). Uninfected (PBS group) and infected and untreated
larvae (untreated group) received only PBS and were included in the assay as control groups. The larvae were
incubated at 35◦C, and daily observations for up to 5 days were performed to determine survival and health index
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Table 1. Susceptibility of Aspergillus fumigatus and Aspergillus flavus clinical isolates to standard antifungals and to
miltefosine (free-form and loaded alginate nanoparticles) by broth microdilution assay.
Species Drugs MIC MEC MFC

MIC50 MIC90 Range MEC50 MEC90 Range MFC50 MFC90 Range

A. fumigatus AMB 0.12 0.12 0.06–0.25 0.12 0.25 0.06–0.25 0.50 1 0.25–1

VRC 0.25 0.50 0.12–0.50 1 2 0.50–2 0.50 1 0.25–1

MFS 2 2 0.50–2 2 2 0.50–�64 2 8 1–8

MFS-AN 600 600 18.7–600 18.7 37.5 4.7–37.5 �600 �600 �600

A. flavus AMB 1 1 0.12–1 1 2 0.12–2 8 16 0.25–�16

VRC 0.25 0.25 0.06–0.25 2 2 0.50–2 4 16 2–�16

MFS 2 16 2–16 1 16 0.50–16 �64 �64 16–�64

MFS-AN 600 600 300–600 150 300 18.7–300 �600 �600 �600

Concentration values are displayed in μg/ml. MIC50/MEC50/MFC50 and MIC90/MEC90/MFC90 values mean the lowest concentrations that inhibited/altered the hyphae/killed 50 and
90% of all isolates, respectively (A. fumigatus, n = 11 and A. flavus, n = 10). The assays were performed three times, in duplicate.
AMB: Amphotericin B; MEC: Minimum effective concentration; MFC: Minimum fungicidal concentration; MFS: Miltefosine; MFS-AN: Miltefosine encapsulated in alginate nanoparti-
cles; MIC: Minimum inhibitory concentration; VRC: Voriconazole.

as previously described [23]. This assay was performed in three independent replicates and 20 larvae were used for
each group.

After 24 h of infection, the fungal burden by determination of the colony-forming unit by g of larvae (CFU/g)
and histopathological analysis of the larval tissues were assessed as described previously [15]. The criteria for
semiquantitative analysis of histological sections was the number of fungal elements viewed per field, according to
the classification: 0 = none, + = limited, ++ = medium, +++ = high, and ++++ = very high [24]. In addition,
we observed the spread of fungal structures throughout the tissue, the number of granulomas containing these
elements and the presence of asexual reproduction structures (conidiophores, phialides and conidia).

Statistical analysis
The statistical analysis was performed using the software Prism 8.0 (GraphPad, CA, USA) and p-values <0.05 were
considered statistically significant.

Results
MFS inhibits A. fumigatus & A. flavus growth
A. flavus clinical isolates exhibited less susceptibility to AMB and VRC compared with A. fumigatus, but all isolates
were considered susceptible. A similar profile was observed for MFS and MFS-AN, with MICs ranging from
0.5 to 16 μg/ml for MFS, whereas MFS-AN reached MIC values ranging from 18.7 to 600 μg/ml (Table 1 &
Supplemental Tables 1 & 2). The hyphae morphological alterations were observed for all treatments and MEC values
were similar to MICs when fungi were treated with AMB, VRC and MFS; however, lower MECs were obtained
for MFS-AN (4.7–300 μg/ml). The best antifungal was VRC against both Aspergillus spp., but interestingly AMB
and MFS had similar MIC50/MIC90 and MEC50/MEC90 values (Table 1). MFS and VRC were fungicidal against
all A. fumigatus isolates (except for strain 1343), whereas AMB were fungicidal for only 50% of the isolates.
However, MFS and VRC were fungistatic against A. flavus, and AMB was fungicidal for 40% of the isolates
(Table 1 & Supplemental Tables 1 & 2). To perform the next tests, A. fumigatus 1220 and A. flavus 998 isolates
were chosen for their susceptibility profiles to represent majority of the clinical isolates tested.

In vitro synergism of MFS combined with VRC on A. fumigatus
Synergistic interaction of VRC with free MFS was observed against A. fumigatus 1220 strain (FICI = 0.24–0.37)
with a reduction of eightfold MICs for both drugs. In contrast, none of combinations tested against A. flavus 998
clinical isolate showed synergism (FICI = 0.62–1.25; Supplemental Table 3).

MFS has antifungal effect & synergism with VRC in an aspergillosis model using G. mellonella
A. fumigatus

The clinical isolate (1220) led to ∼100% larval mortality on the fifth day postinfection, whereas all treatments
with AMB (20 and 40 mg/kg) and VRC (10 and 20 mg/kg) were statistically efficient to enhance the survival, at
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Figure 1. Antifungal efficacy of miltefosine, in its free form or loaded-alginate nanoparticles (MFS-AN, alone or
combined with voriconazole (VRC) on Galleria mellonella larvae infected with Aspergillus fumigatus. Survival curves
(A–C), fungal burden (D) and histopathological analysis (E–J) of G. mellonella larvae infected with 1 × 105

conidia/larvae of A. fumigatus 1220 clinical isolate and treated with AMB, VRC, free MFS or MFS-AN, and the
combinations MFS (20 mg/kg) + VRC (10 mg/kg) or MFS-AN (100 mg/kg) + VRC (10 mg/kg). The brackets indicate
statistical analysis between the treatments (one-way analysis of variance followed by the Dunnett’s test). Fungal
burden data are represented by the mean ± standard deviation. Histological sections of larval tissue were observed at
optical microscopy (400× magnification). Black arrows indicate fungal cells (hyphae or conidia), and white arrows
show asexual reproduction structures.
*p < 0.05; **p < 0.01; ***p < 0.001 compared with the untreated group.
AMB: Amphotericin B; Bars: 50 μm; VRC: Voriconazole; MFS: Miltefosine; MFS-AN: MFS encapsulated in alginate
nanoparticles.

50–75%, of the infected larvae (p < 0.05; Figure 1A). MFS at 20 mg/kg led to 40% larval survival on the fifth day
postinfection, and MFS-AN resulted in the survival rate of 55% (p < 0.05; Figure 1B). In addition, the larvae
health index corroborated the survival data, with a statistical difference in the groups treated with AMB and VRC
at both doses (p < 0.001), MFS at 20 mg/kg (p < 0.01) and MFS-AN (p < 0.05; Supplemental Figure 1). Both
doses of AMB reduced the fungal burden (p < 0.001), whereas only at the higher dose VRC (20 mg/kg) was able
to significantly reduce the fungal burden (p < 0.001; Figure 1D). Treatment with free MFS at both doses also
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reduced the fungal burden (p < 0.01). Although MFS-AN (100 mg/kg) significantly increased the larval survival,
the fungal burden was not significantly different from the untreated group (Figure 1D).

The combination of MFS + VRC significantly increased the survival rate of larvae infected with A. fumigatus
1220 compared with the untreated group (p < 0.001); although not statistically significant, it was slightly better
than MFS monotherapy (survival rates: 70–78% vs 40 %) and similar to the larval survival profile in the VRC
monotherapy (Figure 1C). The larvae treated with MFS-AN + VRC displayed a similar survival profile of treatments
with MFS-AN or VRC monotherapies (Figure 1C). Moreover, MFS + VRC, at the lowest dose for both, led to
a significant reduction of the fungal burden in larvae infected with A. fumigatus (p < 0.001) as well as for
combination of MFS-AN + VRC (p < 0.05). The combination MFS + VRC was better than VRC monotherapy
(p < 0.01; Figure 1D).

The histopathological semiquantitative analysis of the fungal burden in the larval tissue infected with A. fumigatus
and treated with standard antifungals corroborated the CFU counting data – that is, the higher tested doses (AMB
40 mg/kg or VRC 20 mg/kg) were efficient in reducing the tissue fungal count. There was an evident reduction in
fungal burden and granuloma formation in the groups treated with MFS at both doses and MFS-AN (100 mg/kg)
compared with the untreated group (Figures 1E–J; Supplemental Table 4). In addition, fungal burden in the
larval tissue was similar in the tested combinations (MFS + VRC and MFS-AN + VRC) compared with the
monotherapies (Figures 1E–J; Supplemental Table 4).

Aspergillus flavus

Larvae infected with A. flavus 998 and treated with AMB or VRC, at all tested doses, had a similar survival rate
(∼30 %) at the end of the experiment, but neither treatment was statistically different from the untreated group,
which reached ∼100 % mortality rate on the second day postinfection (Figure 2A). The survival curves of the larvae
treated with MFS or MFS-AN were similar to the untreated group, showing that there was no efficacy at any dose
used (Figure 2B). Remarkably, only the combination of MFS-AN + VRC was efficient in significantly increasing
the survival rate (p < 0.001; Figure 2C) and improving the larval health index (p < 0.001; Supplemental Figure 1).
Interestingly, the combination was significantly more efficient than MFS-AN monotherapy at reducing the larvae
mortality (p < 0.001; Figure 2C) and slightly better than VRC (10 mg/kg), although there were no statistical
differences (Figure 2C).

None of conventional antifungal therapies or free MFS significantly reduced the fungal burden of the larval tissues
after infection by A. flavus, but an important reduction in fungal burden was observed in the groups treated with
MFS-AN or MFS-AN + VRC (p < 0.05; Figure 2D). The combination MFS-AN + VRC showed a significant
reduction in the CFU count compared with VRC (10 mg/kg) (p < 0.01; Figure 2D).

Notably, the greatest antifungal efficacy was observed with combined therapy (MFS-AN + VRC) in terms of
reduced mortality rate and fungal burden (Figure 2C–D). In the histological analysis, a slight reduction in A. flavus
fungal elements in the larval tissue in the groups treated with free MFS and MFS-AN (100 mg/kg), combined or
not with VRC, were observed compared with the untreated group, corresponding to the CFU count (Figures 2E–J,
Supplemental Table 4).

Discussion
MFS showed inhibitory activity in vitro against A. fumigatus (MICs: 0.5–2 μg/ml) and A. flavus (MICs: 2–
16 μg/ml) corroborating the data previously found against both Aspergillus species and other filamentous fungi as
well as the fungicidal effect [9–11]. The observation of the in vitro inhibitory effect of MFS-AN against Aspergillus
spp. isolates is novel, despite higher MIC values compared with free MFS. This behavior is due to the MFS
sustained- and slow-release profile promoted by the nanocarrier system [15]. The great advantage of this alginate-
based nanocarrier is the reduction of MFS side effects and frequency of administration, which allows higher dosage
and promotes antifungal effects when it is administered in an in vivo animal model [15–17], highlighting the relevant
potential of this nanocarrier system in the treatment of fungal diseases.

The great potential of MFS or MFS-AN monotherapies has been demonstrated for mycosis treatment. The
antifungal efficacy of both free MFS or MFS-AN in a G. mellonella model against Candida albicans, Cryptococcus
neoformans and Cryptococcus gattii has already been demonstrated, with improvement of survival rates [15]. In vitro
and in vivo activity of free MFS and MFS-AN against Candida auris clinical isolates, an emerging and resistant
fungal species, was recently described [17]. Here, we highlight that free MFS and MFS-AN increased the survival rate
and/or led to a fungal burden reduction in G. mellonella larvae infected by A. fumigatus and A. flavus. Importantly,
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Figure 2. Antifungal efficacy of miltefosine (MFS), in its free form or loaded-alginate nanoparticles (MFS-AN, alone
or combined with voriconazole (VRC) on Galleria mellonella larvae infected with Aspergillus flavus. Survival curves
(A–C), fungal burden (D) and histopathological analysis (E–J) of G. mellonella larvae infected with 1 × 105

conidia/larvae of Aspergillus flavus 998 clinical isolate and treated with AMB, VRC, free MFS or MFS-AN and the
combinations MFS (20 mg/kg) + VRC (10 mg/kg) or MFS-AN (100 mg/kg) + VRC (10 mg/kg). Brackets indicate
statistical analysis between treatments (one-way analysis of variance followed by the Dunnett’s test). Fungal burden
data are represented by the mean ± standard deviation. Histological sections of larval tissue were observed at optical
microscopy (400× magnification). Black arrows indicate fungal cells (hyphae or conidia).
*p < 0.05; **p < 0.01; ***p < 0.001 compared with the untreated group.
AMB: Amphotericin B; Bars: 50 μm; MFS: Miltefosine; MFS-AN: MFS encapsulated in alginate nanoparticles VRC:
Voriconazole.

in a murine model of vaginal candidiasis, free MFS (2%, once a day for 5 days) and MFS-AN (2% MFS, single
dose) were able to control the fungal infection [16] showing the potential use of MFS to treat fungal infections.

We tested combined therapy of MFS, in solution or encapsulated in the alginate nanoparticles, with VRC using
a G. mellonella invertebrate model of aspergillosis considering the in vitro synergistic effects observed in our work
and previously described against A. fumigatus [11]; we also compared the combined therapies with their respective
monotherapies. MFS or MFS-AN, when combined with VRC, led to a reduction of larval mortality and fungal
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burden, and this was slightly better than monotherapies against A. fumigatus. Remarkably, MFS + VRC and MFS-
AN alone or combined with VRC reduced the fungal burden and improved the survival of the larvae infected by
A. flavus, in contrast to therapeutic failure using MFS or VRC monotherapies. In fact, combined therapy produced
the most pronounced increase in survival rate and reduction in fungal burden, indicating a synergistic effect of
these drugs.

Three clinical cases have been reported using free MFS as salvage therapy in invasive infections by the multidrug-
resistant Lomentospora prolificans when combined with VRC and/or terbinafine; there was therapeutic success in
all cases [25–27]. To support this idea, the Infectious Diseases Society of America practice guideline for aspergillosis
recommends the combination of antifungals (polyenes or azoles with echinocandins) that showed synergistic effects
in most preclinical studies, and the combinations can be recommended for IPA treatment in patients with tolerance
to monotherapy or salvage therapy [5]. The use of combined therapy has advantages that include a reduction in
dosage for a drug that can be associated with considerable side effects and additive activity of drugs to increase
efficiency and reduce duration of treatment [28]. In this regard, the use of combined therapy toward resistant or less
susceptible isolates can reduce the risk of failure in monotherapy.

Conclusion
To our knowledge, no previous study has demonstrated antifungal effects of MFS alone or combined with
conventional antifungals in an animal infection model by filamentous fungi. Our data show that MFS, in solution
or encapsulated in the alginate-based nanocarrier, alone or combined with VRC, has potential as an alternative in
the treatment of fungal infections by Aspergillus spp., improving therapeutic success.

Summary points

• Miltefosine, in free solution or loaded alginate nanoparticles, combined with voriconazole showed in vivo
synergistic effects on the larvae of Galleria mellonella infected with Aspergillus fumigatus or Aspergillus flavus.

• The combined therapy reduced fungal burden and improved larvae health, leading to a significant increase of
larval survival rate.

• Combined therapy was more effective in the treatment of aspergillosis than the monotherapies.
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