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Abstract
Background: Mutations in cyp51A gene are known as main mechanisms of azole re-
sistance in Aspergillus fumigatus, whereas azole-susceptible strains also carry cyp51A 
mutations (polymorphisms). The polymorphisms found in Europe mainly consist of 
two combinations of mutations, that is combinations of five single-nucleotide poly-
morphisms (SNPs) of cyp51A, referred to as cyp51A-5SNPs, and combinations of three 
SNPs of cyp51A, referred to as cyp51A-3SNPs. Few studies have compared the distri-
butions of cyp51A polymorphisms between different regions.
Objectives: The aim of this study was to investigate the regional differences of cyp51A 
polymorphisms.
Methods: We compared the proportions of cyp51A polymorphisms in clinical and en-
vironmental strains isolated in various countries, and analysed the strains phyloge-
netically using short tandem repeats (STRs) and whole-genome sequence (WGS).
Results: Among the Japanese strains, 15 out of 98 (15.3%) clinical strains and 8 out 
of 95 (8.4%) environmental strains had cyp51A polymorphisms. A mutation of cyp-
51AN248K was the most prevalent polymorphism in both clinical (n = 14, 14.3%) and 
environmental strains (n = 3, 3.2%). Only one environmental strain harboured cyp51A-
5SNPs, which was reported to be the most prevalent in Europe. For phylogenetic 
analyses using STRs and WGS, 183 and 134 strains, respectively, were employed. 
They showed that most of the strains with cyp51AN248K clustered in the clades differ-
ent from those of the strains with cyp51A-5SNPs and cyp51A-3SNPs as well as from 
those with TR34/L98H mutations.
Conclusions: This study suggests that there are genetic differences between cyp51A 
polymorphisms of A. fumigatus in Japan and Europe.
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1  |  INTRODUC TION

Aspergilllus fumigatus is the most important of the Aspergillus 
species, and it causes chronic pulmonary aspergillosis (CPA) and 
invasive pulmonary aspergillosis (IPA).1 Recently, azole resis-
tance in A.  fumigatus strains has been increasingly recognised 
as a cause of treatment failure.2 Azole resistance mechanisms 
are mostly correlated with mutations of cytochrome P450 ste-
rol 14α-demethylase (CYP51A), a target protein of azoles.3,4 
Main mechanisms are tandem repeats (TRs) in the cyp51A pro-
moter region. Some environmental strains harbour TR34/L98H 
and TR46/Y121F/T289A, which suggests the acquisition of azole 
resistance in the environment such as in soil and compost with 
fungicides.2,5-8 The mutations were also found in environmen-
tal strains isolated in Asia.9-12 Some of the resistant strains with 
TR34/L98H in the environment were reported to expand clonally 
to different areas in India and Iran, a fact indicating their abil-
ity to spread to distant locations.9,11 Other main mechanisms are 
point mutations in cyp51A regions. The point mutations at G54, 
G138, P216, M220 and G448 frequently cause azole resistance. 
Several point mutations in cyp51A regions have been reported 
to be correlated with exposure to azoles in human bodies.8,13-15 
TR34/L98H and TR46/Y121F/T289A are dominant azole resis-
tance mechanisms in Europe,2,7 while in Japan, azole resistance 
is mainly caused by cyp51A point mutations such as G54E, G54W, 
G54R, G138, P216L and G448S.16,17 Thus, the prevalence of the 
azole resistance mechanisms seems to differ between the two 
regions.

On the contrary, not all of the cyp51A mutations necessar-
ily cause azole resistance, as some azole-susceptible strains have 
cyp51A polymorphisms, which include substitutions such as F46Y, 
H147Y, M172V, N248T, N248K, D255E, D343N, E427K and 
G434C.4 The polymorphisms in Europe consist mainly of two com-
binations of mutations. One is a combination of single-nucleotide 
polymorphisms (SNPs), which lead to five amino acid substitutions 
(F46Y, M172V, N248T, D255E and E427K) that are referred to as 
cyp51A-5SNPs, and the other consists of SNPs that lead to three 
amino acid substitutions (F46Y, M172V and D255E) referred to as 
cyp51A-3SNPs.18,19 Together, they were reported to account for 
about 10% of clinical azole-susceptible strains and to have elevated 
MICs against azoles, although they are not azole-resistant.19,20 
On the contrary, cyp51AN248K was found most frequently among 
strains in China21 and among strains recovered from lung transplant 
recipients in Canada.22 However, few studies have compared the 
distributions of cyp51A polymorphisms between different regions. 
Such studies may elucidate the clinical characteristics of A. fumiga-
tus in each region, which may be related to the acquisition of azole 
resistance.

Therefore, the purpose of the present study is to gain insight 
into cyp51A polymorphisms among clinical and environmental 
strains in Japan and compare them genetically with those in other 
regions.

2  |  MATERIAL S AND METHODS

2.1  |  Clinical and environmental strains

All clinical and environmental strains in the present study were 
provided by the National Bio-Resource Project (NBRP), Japan 
(http://www.nbrp.jp). We randomly selected 100 clinical azole-
susceptible strains and 111 environmental strains with unknown 
cyp51A sequences from NBRP. Clinical strains were recovered 
in Japan between 1998 and 2017. Environmental strains were 
obtained from soils and air in Japan between 2007 and 2016 
(Table S1). All the strains were identified as A. fumigatus both by 
morphological characteristics and by sequencing the β-tubulin 
gene as previously described.23 The procedure of this study, in-
cluding the availability of clinical information, was approved by 
the Ethics Committee of our institution (approval number MMRC-
REC 21-26).

2.2  |  Microsatellite genotyping

Microsatellite genotyping was performed for all strains as described 
previously.24 The regions of nine loci (2A, 2B, 2C, 3A, 3B, 3C, 4A, 
4B and 4C) were amplified and sequenced. The numbers of short 
tandem repeats (STRs) were counted.

2.3  |  Antifungal susceptibility testing

We determined MICs by the Clinical and Laboratory Institute 
(CLSI) M38-E3 broth microdilution method,25 with slight modi-
fications as described previously.26 In brief, we measured MICs 
against itraconazole (ITCZ) and voriconazole (VRCZ) in RPMI 1640 
medium (pH 7.0) at 35°C using EIKEN plates (Eiken Chemicals). 
All tests were repeated at least in triplicate. Isolates with an el-
evated MIC of either ITCZ or VRCZ (≥4  µg/ml) were defined as 
azole-resistant, and the others were considered azole-susceptible 
in this study.

2.4  |  Screening of cyp51A point mutations and TR

The strains were screened for cyp51A point mutations by Surveyor 
Nuclease assay, as described previously.26 Briefly, the cyp51A am-
plicons of each strain were hybridised with reference cyp51A am-
plicon. They were then treated with Surveyor Nuclease (Integrated 
DNA Technologies, Inc), an endonuclease that cleaves the sites of 
DNA mismatch and distortion. Both cleaved and uncleaved frag-
ments were revealed by electrophoresis. For screening TR, we 
amplified the cyp51A promoter region by PCR and analysed the 
amplicon by electrophoresis. The primers used here are shown in 
Table S2.

http://www.nbrp.jp
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2.5  |  Sequencing of cyp51A regions

We inspected the sequences of cyp51A regions of the strains sus-
pected of having mutations by screening. The PCR-amplified cyp51A 
regions were sequenced by the use of appropriately designed prim-
ers (shown in Table  S2). Nucleotide sequences of DNA fragments 
were determined using Big Dye Terminator v1.1/3.1 (Applied 
Biosystems) and an ABI automatic sequencer (PerkinElmer). Then, 
we performed sequencing alignments against the reference se-
quence from GenBank (GenBank accession no. AF338659) or 
FungiDB (AFUB_063960).

2.6  |  Construction of cyp51A mutant strains

To delineate the association between cyp51AN248K mutation and 
azole resistance, we replaced the cyp51A region of Afs35 strain with 
the cyp51AWT or cyp51AN248K mutation by homologous recombina-
tion using Crispr/Cas9 genome editing.27 In brief, the repair tem-
plates (cyp51AWTand cyp51AN248K) were constructed by PCR sewing 
and overlap extension PCR. The primers used to construct the repair 
template are shown in Table S2. These amplicons were cloned into 
vector pBluescript II SK(+) digested with HindIII and KpnI, by In-
Fusion HD Cloning Kit (TAKARA Bio). Inverse PCR was performed 
to substitute the nucleobase in the cyp51A gene (AAT at 248 codon 
to AAA) on the plasmid.28 After the protoplast-polyethylene glycol 
method, A.  fumigatus strains were transformed by the Crispr-Cas9 
system using the prepared repair template.

2.7  |  Genotypic analysis

For genotypic comparisons, we analysed nine microsatellite markers 
of strains, based on the UPGMA minimal spanning tree algorithm of 
BioNumerics V7.6 software (Applied Math Inc) and constructed a 
dendrogram. We added some data on strains reported in past artic
les.9,11,13,18,29-31

2.8  |  Illumina whole-genome sequencing and 
SNP analysis

Genome DNA was extracted from over-night cultured mycelia by 
the phenol-chloroform method as described previously.32 Genomic 
DNA libraries of 17 A. fumigatus strains were constructed using an 
NEBNext Ultra DNA Library Prep Kit (New England BioLabs) ac-
cording to the manufacturer’s protocol. A 150-bp paired-end se-
quencing on a HiSeq X Ten system (Illumina) was carried out by 
GENEWIZ. In addition to the 17 samples, we also used raw data 
from 23,33 2734 and 67 strains.35 Raw genomic reads of all 134 sam-
ples were quality-controlled and trimmed by fastp (ver. 0.20.1).36 
Filtered reads were aligned against the Af293 reference genome 
and A1163 reference genomes (retrieved from AspGD, http://www.

aspgd.org/)37 using BWA-MEM (ver. 0.7.17-r1188).38 The detec-
tion of SNPs was performed using GATK (ver. 4.1.2.0).39 According 
to the best practice workflow for ‘Germline short variant discov-
ery’ and Zhao et al.,35 the function ‘HaplotypeCaller’ was used to 
call short variants (SNPs and INDELs) with the sorted BAM file for 
each sample, followed by the function ‘GenotypeGVCFs’ to com-
bine the vcf files. Next, only SNPs were extracted from the joint-
called variant file using the function ‘SelectVariants’. To filter out 
false-positive variant calling, the function ‘VariantFiltration’ was 
carried out with the following parameters: ‘QD < 25.0 || FS > 5.0 
|| MQ < 55.0 || MQRankSum < −0.5 || ReadPosRankSum < −2.0 || 
SOR > 2.5’.

2.9  |  Phylogenetic analysis of WGS SNPs data

The SNP sites with a minor allele frequency ≥5% and no missing data 
were filtered by VCFtools (ver. 0.1.16)40 with the options ‘--maf 0.05 
--max-missing 1’. A phylogenetic tree was constructed using multi-
threaded RAxML (ver. 8.2.12),41 the GTRCAT model and 1000 boot-
strap replicates, and visualised by iTOL.42 Phylogenetic analysis was 
also performed against the A1163 reference.

2.10  |  Evaluation of virulence against silkworms

We infected silkworm (Bombyx mori) larvae with A.  fumigatus 
strains as previously described,43 with slight modifications. Briefly, 
fifth-instar silkworms were purchased from Ehime Sansyu. They 
were raised at 30°C for 2–3 days. Inoculum of 0.05 ml diluted to 
3.0  ×  106  CFU/ml was injected into the haemolymph of the silk-
worms using a 1 ml Terumo Myjector 29G insulin syringe (Terumo). 
After the infection, they were maintained at 30°C and their sur-
vival was evaluated by Kaplan–Meier method using a log-rank test 
with GraphPad Prism 5 (GraphPad Software Inc). This experiment 
was performed in duplicate, and the results were shown as mean 
values.

2.11  |  Growth under hypoxia

Conidia of each strain were inoculated on glucose minimal medium 
agar medium for 90 h at 37°C in an Anaeropack System (Mitsubishi 
Gas Chemical), the concentration of which was maintained at 1%–
3%, that is hypoxia. We compared its growth under hypoxia with 
that under ambient air, that is normoxia.

2.12  |  Statistical analyses

Quantitative variables were analysed by t test and Mann–Whitney 
test. Categorical variables were compared by chi-squared or 
Fisher’s exact test, and a two-tailed p-value of <.05 was considered 

http://www.aspgd.org/
http://www.aspgd.org/
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significant. Analyses were conducted with GraphPad Prism version 
5 and JMP® Pro 16 (SAS Institute Inc).

2.13  |  Accession numbers

The sequence data of cyp51A mutations in this study are avail-
able from the DDBJ Sequenced Read Archive (accession numbers 
LC639871 to LC639893). The whole-genome sequence (WGS) data 
of A.  fumigatus strains in this study are available from the DDBJ 
Sequenced Read Archive under accession numbers DRR290031 to 
DRR290047.

3  |  RESULTS

3.1  |  Samples and clinical information

We investigated the polymorphisms of cyp51A of clinical and en-
vironmental strains isolated in Japan according to an analysis dia-
gram (Figure 1). We excluded one clinical strain because we could 
not amplify the STR regions. We also excluded one clinical strain 
and 16 environmental strains because they had combinations of 

STRs that were shared with others. Out of 98 clinical strains, 15 
(15.3%) had cyp51A polymorphisms (Table 1), and 8 out of 95 envi-
ronmental strains (8.4%) had cyp51A polymorphisms (Table 2). The 
distributions of the strains screened for cyp51A polymorphisms are 
shown on the maps of Figure S1. cyp51AN248K was the most preva-
lent polymorphism in both clinical and environmental strains, with 
a greater frequency in clinical strains (14 of 98, 14.3%) than in envi-
ronmental strains (3 of 95, 3.2%). We found cyp51A-5SNPs, a prev-
alent cyp51A polymorphism in Europe, in only one environmental 
strain, and no tendency was found with a clinical background. 
Among the 14 clinical strains with cyp51AN248K mutations, 6 were 
isolated from azole-naïve patients. Interestingly, a frameshift mu-
tation at G465 was found in IFM62405, whose azole susceptibility 
was improved. We showed a summary of these results in Table S3. 
Information concerning all the strains is shown in Tables S4 and S5.

3.2  |  Evaluation of the effect of cyp51AN248K on 
MICs to azoles

For the purpose of certifying the correlation of cyp51AN248K to 
azole susceptibility, we constructed recombinant strains with 
cyp51AWT or cyp51AN248K using Crispr/Cas9 genome editing.27 

F I G U R E  1  Analysis diagram of this 
study. We analysed the cyp51A regions 
of clinical azole-susceptible strains 
(A) and environmental strains (B). The 
cyp51A genes were screened for point 
mutations and tandem repeats (TR) by 
Surveyor Nuclease method and PCR 
amplification, respectively. When cyp51A 
mutations were found, the alignment of 
cyp51A regions was identified by Sanger 
sequencing. As for environmental strains 
with cyp51A mutations, MICs were 
measured
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Both of the recombinant strains displayed almost the same MICs 
to azoles (Table  3). Furthermore, the clinical and environmental 
strains with cyp51AN248K did not show elevated MICs to azoles 
compared to strains with cyp51AWT. Among clinical strains, there 
was no significant difference in MICs between 83 WT strains 
and 14 N248K strains by Mann–Whitney test (Figure 2A); among 
environmental strains, no elevation of MICs to azoles was found 
in three WT strains (IFM60759, 62370, 63893) or three N248K 
strains (IFM60748, 62400, 62432) (Figure 2B). These results in-
dicate that cyp51AN248K does not influence the susceptibility to 
azoles.

TA B L E  2  Characteristics of environmental strains with cyp51A mutations and MICs against azoles

IFM cyp51A seq Tandem repeat Place Source

MIC (µg/ml)

ITCZ VRCZ

60748 N248K – Tokyo Air 0.5 0.5

60765 V396A – Chiba Air 0.25 1

62345 D343N – Chiba Soil 1 1

62400 N248K – Nagano Soil 0.5 0.5

62405 c.464_465insgtgga – Nagano Soil 0.25–0.5 0.25

62432 N248K – Gifu Soil 0.5 1

62628 F46Y – Chiba Soil 2 2

M172V

N248T

D255E

E427K

63915 c.198+22g>cb – Chiba Air 0.5 0.5

Abbreviations: ITCZ, itraconazole; VRCZ, voriconazole.
ac.464_465insgtgg means insertion of nucleotide ‘GTGG’ between L464 and G465.
bc.198+22g>c means a base substitution in intron.

TA B L E  3  MIC profiles of recombinant strains against azoles

Strain cyp51A

MIC (µg/ml)

ITCZ VRCZ

AfS 35 cyp51AWT 0.5 1

(Background 
strain)

cyp51AWT Δcyp51AWT::cyp51AWT::hph 0.5 1–2

cyp51AN248K Δcyp51AWT::cyp51AN248K::hph 0.5 2

Abbreviations: ITCZ, itraconazole; VRCZ, voriconazole.

F I G U R E  2  MICs against azoles of WT 
and N248K strains. Among clinical strains, 
there was no significant difference in 
MICs between WT strains and N248K 
strains by Mann–Whitney test. Among 
environmental strains, no elevation of 
MICs to azoles was found in three WT 
strains or three N248K strains. Bars 
indicate median values



1360  |    MAJIMA et al.

F I G U R E  3  Phylogenetic analysis of STR results based on each of the gene variants with the clustering method, using UPGMA and 
minimal spanning tree algorithm of BioNumerics V7.6 software. Yellow shading indicates cyp51AN248K. Strains 1042/09 (isolated in India) and 
mn224 (isolated in Iran) represent other strains that share STR combinations
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Name

IFM60515

IFM64307

350/E/12/3

IFM64797

IFM53927

IFM61611

IFM62628

IFM60065

IFM50268

mn223

1272/09

290/E/11

IFM63568

IFM62432

834/10

IFM62520

(4-36)

12-90032258

mn230

IFM55439

IFM55044

1962 M989.04-05-2012

IFM60235

2087 m1341.17-07-2012

C94

094411/7/50

Myc-2008-002/46

IFM62153

IFM64673

IFM49435

1978 m1618.18-07-2012

380/E/12/2

IFM62674

IFM61572

patient D

IFM62709

IFM52659

IFM57130

388/E/12/1

No name

No name

patient E

IFM51747

patient C

T22-R

1011/10

E3198

IFRC: 1858

IFM59832

IFM64969

IFM62054

IFM60817

Oct-26

IFM62119

IFM62821

NGS-ER8

371/E/12/2

IFM62686

IFM58328

IFM58402

No name

No name

IFM64306

No name

No name

No name

IFM62338

IFM57541

IFM60993

IFM63817

894/09

111/10

IFM64302

IFM62400

IFM61113

R5-09-2-S

R6-09-1-S

IFM63563

IFM63311

IFM62241

IFM63810

R4-07-1-S

IFM61883

IFM64184

IFM64301

IFM62521

IFM63296

1261/09

IFM60814

mn249

IFM62312

IFM63666

mn242

IFM62918

IFM60516

IFM63727

344/E/12/3

369/E/12/3

E1489

T18_R

Hamid02

04-202165

F0622

OKH50

E1299

IFM51977

No name

No name

KUFF250

1042/09

E218

Myc-2008-002/60

IFM53543

IFM64798

SSI-39

351/E/12/1

308/E/12/1

IFM62055

IFM50999

IFM61960

KUFF131

IFRC: 1866

T11_R

SSI-54

IFM61884

BEN18512R

MF327

MF469

IFM64793

KUFF401

IFM63823

IFM47670

IFM62799

IFM60748

IFM62677

IFM50917

IFM62118

94/P/10

1286/09

IFM60819

IFM60818

MF331

IFM60994

IFM64666

343/E/12/1

IFM64496

IFM64563

1268/10

IFM49895

IFM60369

IFM61407

IFM51748

outdoor air

1573/09

IFM50669

IFM63146

IFM63587

IFM60513

IFM64187

IFM64190

S1-07-3-S

IFM63141

1608/09

IFM62518

IFM63447

IFM51978

B44

IFM60901

IFM63691

mn240

IFM63871

IFM54729

IFM63431

IFM64185

IFM62517

IFM62522

S2-09-1-S

mn224

Nov-81

IFM54842

IFM63873

C821

IFRC: 1854
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3.3  |  Phylogenetic analysis using data of STR 
combinations

To shed light on the genotypic difference between strains with cyp-
51AN248K and others, we phylogenetically analysed a total of 183 strains 
from various countries using STR combinations. IFM62311 and 55548 
were excluded because one locus of STR regions was not amplified ap-
propriately. Among clinical strains, 11 out of 14 strains with cyp51AN248K 
clustered in two clades. Out of three environmental N248K strains, 
one strain clustered there. The two clades to which the N248K strains 
belonged did not include any European strains with cyp51A-5SNPs or 
cyp51A-3SNPs. Further, the two clades did not contain any strains with 
TR34/L98H, whether they were isolated from Europe or Asia (Figure 3).

3.4  |  Phylogenetic analysis using SNV data

We also analysed the WGS data of the 17 Japanese strains with the 
cyp51AN248K mutation or cyp51AWT phylogenetically, comparing them 
with the previously reported data (117 strains).33-35 159,163 poly-
morphic loci were predicted after hard filtering for the 134 strains 
(Figure S2). 69,412 polymorphic loci were predicted for 122 strains 
(Figure  4), excluding the 12 strains with cyp51A-3SNPs, in which 
there was a large number of SNPs against Af293 (134,515–147,066 
SNPs): CM2495, CM2730, CM2733, CM3249, CM3249b, CM3262, 
CM3720, CM4602, CM4946, CM7560, CM7570 and TP32. All the 
strains were divided into four clusters, as already reported.34 Three 

major clades mainly consisted of the strains with cyp51AWT (Cluster 
I), cyp51A with TR34/L98H mutation (Cluster II) and cyp51A-5SNPs 
(Cluster III) (Figure 4, with Af293 as reference). The 12 strains with 
cyp51A-3SNPs clustered in a different clade from the others (Cluster 
IV) (Figure S2, with Af293 as reference). Most of the Japanese WT 
strains belonged to Cluster I. One clade of Cluster I included most 
of the strains with cyp51AN248K. These four clades were maintained 
when A1163 was used as reference (Figures S3 and S4).

3.5  |  Evaluation of virulence of the strains with 
cyp51AN248K mutations

We evaluated the virulence of the strains using the silkworm 
model. Silkworms were inoculated with WT strains or N248K 
strains. IFM64190, 64673 and 64797 were used as WT strains, and 
IFM64302, 64563 and 64666 were used as N248K strains. Each 
strain was injected into five silkworms. We also made Mock (five 
silkworms) as an uninfected group. There was no difference in viru-
lence between the WT and N248K strains (Figure 5).

3.6  |  Growth under hypoxia

Although growth of A. fumigatus strains under hypoxia was reported 
to be related to their virulence,44 we did not observe any differ-
ence in alteration of growth under hypoxia between the two groups 
(Figure  6). Clinical strains included five N248K strains (IFM62241, 
63141, 64302, 64563, 64666) and six WT strains (IFM62517, 64190, 
64301, 64496, 64673, 64797). Environmental strains included three 
N248K strains (IFM60748, 62400 and 62432) and three WT strains 
(IFM60759, 62370 and 63893).

4  |  DISCUSSION

In the present study, we demonstrated that cyp51AN248K was the 
most prevalent cyp51A polymorphism among A. fumigatus strains in 
Japan, while only one strain harboured cyp51A-5SNPs. Since cyp51A-
5SNPs and cyp51A-3SNPs were reported to be prevalent in Europe, 
this result indicates that strains in Japan have a different constitu-
tion of cyp51A polymorphisms from those in Europe. For phyloge-
netic analyses with STR and WGS, 183 and 134 strains, respectively, 
from various countries were employed. They suggested that most 
of the strains with cyp51AWT and cyp51AN248K in Japan clustered in 
the clades different from those of the strains with cyp51A-5SNPs 
and cyp51A-3SNPs as well as from those with TR34/L98H mutations.

F I G U R E  4  Whole-genome phylogenetic analysis of the strains with cyp51AN248K and others isolated in Japan and foreign countries, using 
Af293 as a reference strain. The strains with cyp51AN248K (shaded in yellow) clustered in one clade, while the strains with cyp51A-5SNPs 
(shaded in blue) and TR34/L98H (shaded in red) clustered in two other clades, respectively. Strains in this study are indicated by circular dots 

F I G U R E  5  Killing rates of silkworms infected with clinical 
strains with cyp51AN248K mutations. The survival rates of silkworms 
inoculated with WT strains or N248K strains were evaluated. 
We also made Mock (five silkworms) as an uninfected group. The 
experiments were performed twice, and the results were shown 
as mean values. No significant difference in survival was detected 
between the WT (n = 15) and N248K (n = 15) groups
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The prevalence of cyp51AN248K polymorphisms was reported to 
be 13.1% among clinical strains in China and 14.4% among those 
from lung transplant recipients in Canada,21,22 percentages similar 
to our report (14.3%). The constitutions of cyp51A polymorphisms 
may be similar in these areas.

It has been suggested that azole treatment in patients is not cor-
related with the emergence of cyp51AN248K, since cyp51AN248K mu-
tations were found in both environmental strains and clinical strains 
isolated from azole-naive patients. Phylogenetic analysis based on 
WGS indicated that most of the N248K strains clustered in the same 
clade, while the strains with TR34/L98H clustered in a clade to which 
most of the azole-susceptible strains did not belong. A. Chowdhary 
and F. Ahangarkani reported the clonal spread of strains with TR34/
L98H in India and Iran.9,11 In previous papers, analysis based on geno-
typing and WGS revealed more genetic diversity of azole-susceptible 
strains compared to strains carrying TR34/L98H mutations.11,33,45,46 
Further investigations of cyp51A polymorphisms of azole-susceptible 

strains and cyp51A mutations of azole-resistant strains in various 
countries will be helpful for delineating the characterisation of the 
pathogen and the spread of azole resistance in each region.

Our study suggested that cyp51AN248K does not affect azole 
susceptibility. These results are compatible with other reports.4,47 
The amino acid of N248 was reported to be located in the sur-
face of CYP51A protein.4,47 It is thought that the substitution of 
this amino acid has little influence on interacting with azole agents 
or the protein structure.4,47 On the contrary, strains harbour-
ing cyp51A-5SNPs or cyp51A-3SNPs show slightly elevated MICs 
against azoles.19 This suggests that the strains with cyp51A-3SNPs 
and cyp51A-5SNPs can affect the clinical treatment of azoles, and 
this emphasises the importance of surveying the distribution of 
these polymorphisms. It is noteworthy that, in the present study, 
we compared cyp51A regions with the sequence of A1163 as a 
reference strain. Since Af293, the other reference strain, has a 
polymorphism of cyp51A-5SNPs,19,34 clarification of the chosen 
reference strain is essential.

Interestingly, we demonstrated that the polymorphisms of cy-
p51AN248K were more prevalent in clinical strains than in environ-
mental ones. Although the result may be correlated with many 
factors such as the exposure to agricultural fungicides in the envi-
ronment, regional distributions of the cyp51A polymorphism inside 
Japan, and the clinical entity of aspergillosis of the patients, one 
possible explanation for this is that the strains with cyp51AN248K 
might have pathogenic factors. However, we could not detect any 
strong pathogenicity in the experiments with silkworms, nor in any 
features of growth under hypoxia, which were reported to be fac-
tors of pathogenicity in A.  fumigatus.44 More detailed insights into 
these polymorphisms may lead to elucidation of the factors related 
to pathogenesis. Silkworms have innate cellular immunity such as 
phagocytic and humoral immune responses.48 They have been used 
as an experimental animal model for evaluating the features of 
pathogenic microorganisms, such as pathogenetic genes of Candida 
albicans and Cryptococcus neoformans.48,49

This study has several limitations. First, it contains bias in the se-
lection of strains. Some clinical strains were cultured from patients 
who had treatment difficulties, and environmental strains were 
cultured from a limited number of locations. More precise results 
will be gained by random surveys of strains from many patients and 
places. Second, more information about clinical strains may enable 
us to explore correlations of the polymorphisms and clinically patho-
genic features.

In conclusion, we clarified genetic differences between the 
strains in Japan and Europe in terms of cyp51A polymorphisms. 
Further investigations may lead to obtaining better insights into the 
features of A. fumigatus strains as clinical pathogens and the patho-
physiology of azole resistance in A. fumigatus.
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F I G U R E  6  Growth alteration of N248K and WT strains under 
hypoxia. We measured the ratios of colony diameters of N248K and 
WT strains under hypoxia and normoxia. No significant differences 
were observed between the two groups of strains among clinical 
strains (A) or environmental strains (B) by t test. Error bars indicate 
standard errors
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