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Abstract

Aspergillus section Fumigati is reported in up to 99% of aspergillosis cases in penguins. So far, no data re-

garding molecular epidemiology and azole resistance are available for A. fumigatus isolates collected from

Magellanic penguins. The aim of this work was to perform molecular identification of Aspergillus section

Fumigati at species level, to genotype those isolates using microsatellite markers, to evaluate the in vitro

susceptibility patterns of A. fumigatus sensu stricto, and to characterize the cyp51A gene in clinical A. fu-

migatus strains isolated from Magellanic penguins with proven aspergillosis. All 34 isolates included in the

study were identified as A. fumigatus sensu stricto. Analyzing the genetic diversity of the isolates of A. fumi-

gatus sensu stricto, we identified two possible outbreaks in the rehabilitation center and we also observed

the maintenance of clonal strains through the years. One A. fumigatus sensu stricto isolate was resistant

to posaconazole, but the mutations found in the cyp51A gene of this isolate have not been described as

conferring phenotypic resistance, suggesting that other mechanisms of resistance could be involved in the

resistance of this isolate. With this study, we were able to understand the molecular diversity of Aspergillus

fumigatus isolates collected from Magellanic penguins, to characterize them and to associate them with the

described global population of Aspergillus fumigatus.

Lay summary

A. fumigatus sensu stricto is of great importance in penguins’ aspergillosis. We could identify two outbreaks

in the rehabilitation center and the maintenance of clonal strains through the years. Regarding antifungal

prophylaxis, it may proceed, but preferably with surveillance for azole resistance.

Keywords:molecular identification, microsatellite markers, genomic diversity, genotyping, Aspergillus resistance, mechanisms
of resistance, penguins.
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Introduction

Aspergillosis is one of the most important infectious diseases in
captive penguins, and an important limiting factor for the reha-
bilitation of these animals. Rates of 7.3 per 100 penguins/month
for incidence density, and of 48.5% for proportionate mortality
are attributed to this mycosis inMagellanic penguins (Spheniscus
magellanicus) during rehabilitation.1,2 As well known for other
hosts,3,4 inhalation of fungal conidia is the main route of infec-
tion, and respiratory airways are the most affected anatomic site
in penguins.5

The main infection source of aspergillosis in penguins in reha-
bilitation is not proven so far.A study with different avian species
has shown the recovery center as a potential source ofAspergillus
infection.6 However, a previous epidemiological study also raised
the hypothesis that some captive penguins could have been col-
onized/infected by Aspergillus in nature, prior to their rescue to
the rehabilitation center.1 Although there are some studies de-
scribing aspergillosis in free-ranging birds,7–10 there is just one
report of this mycosis in Magellanic penguins in nature.11

Up to 99% of aspergillosis cases in penguins are attributed to
Aspergillus section Fumigati.1 Aspergillus identification at sec-
tion level is achieved by the observation of macro- and micro-
scopic characteristics, however, the identification at species level
is only possible using molecular techniques.12 Clinical implica-
tions for identifying cryptic species (species from the same sec-
tion difficult to distinguish phenotypically from each other but
different at molecular level) include their differences concerning
intrinsic azole resistance13,14 and gliotoxin production.15 Birds
are particularly susceptible to this mycotoxin when produced in
vivo, since it induces immunosuppression.15,16

Despite the intrinsic azole resistance of cryptic Aspergillus
species, the emergence of azole resistance in A. fumigatus has
become a global concern, resulting in increase of morbidity and
mortality rates caused by aspergillosis.17–19 Understanding the
molecular mechanisms involved in phenotypic resistance is im-
portant from an epidemiological perspective, since it can suggest
the origin of the resistance. Mutations in the cyp51 gene are re-
ported as the most common molecular mechanisms involved in
phenotypic azole resistance so far.20,21 Most of these mutations
can be related to agriculture procedures, most likely associated
with cross resistance from the use of crop fungicides.22,23 Alter-
natively, acquired resistance may be due to patients’ long-term
azole therapy.24,25

Surveillance of Aspergillus azole-resistance has been recom-
mended worldwide,26–31 however it is not a routine in veterinary
medicine practice, despite the routine antifungal use in prophy-
laxis and/or treatment of fungal diseases.1,32 Specifically regard-
ing the susceptibility patterns of Aspergillus isolated from avian
species, few studies have been published, most of them with iso-
lates from poultry.33–36 In addition, no data concerning molecu-
lar identification at the species level of Aspergillus isolates from
Magellanic penguins are available so far. This penguin species re-

produces in Argentine and Chilean Patagonia and the Falklands
Island, and migrates seasonally to the coast of Argentina, and
through the Atlantic oceanside to other countries (Uruguay and
Brazil).

The study of the Aspergillus genetic diversity by the use of
molecular typing methods is a valuable tool. Genotyping tech-
niques are being used in molecular epidemiology studies for de-
tection of outbreaks, identification of patients chronically colo-
nized/infected by Aspergillus and for monitoring antifungal ther-
apy efficacy in those patients with aspergillosis.37–39 Thus, this
study aimed to perform molecular identification of clinical As-
pergillus section Fumigati strains isolated from Magellanic pen-
guins with proven aspergillosis, to understand the epidemiology
of those A. fumigatus sensu stricto by it genotyping, to evaluate
the susceptibility pattern of A. fumigatus sensu stricto to azole
drugs, and to study possible mutations of the cyp51A gene asso-
ciated with azole resistance.

Methods

Aspergillus isolates

A total of 34 Aspergillus isolates belonging to section Fumigati
were recovered from fatal aspergillosis that occurred in Magel-
lanic penguins between 2008 and 2019 (31 from captive pen-
guins and three from free-ranging penguins)1 in Southern Brazil.
Aspergillus isolates were identified at section level by macro- and
microscopic characteristics and were stored at the fungal collec-
tion of the Mycology Laboratory from the Hospital of the Fed-
eral University of Rio Grande, Rio Grande do Sul, Brazil.

DNA extraction

For the molecular techniques described below, genomic DNA of
clinical isolates was extracted with the High Pure PCR Template
Preparation KitTM (Roche Diagnostics GmbH, Mannheim, Ger-
many) according to the manufacturer’s instructions.

Molecular identification of Aspergillus at species level

Partial sequencing of the calmodulin gene (calM),40 us-
ing the primers cmd5 (5′CCGAGTACAAGGAGGCCTTC3′)
and cmd6 (5′CCGATAGAGGTCATAACGTGG3′), and/or par-
tial sequencing of the β-tubulin gene (benA),41 using the
primers β-tub1 (5′-AATTGGTGCCGCTTTCTGG-3′), and β-
tub2 (5′-AGTTGTCGGGACGGAATAG-3′) were performed to
the species identification of all isolates. PCR for both amplifica-
tions was carried out in a 25 μl volume containing 0.2 μM of
each primer, 20–50 ng of Aspergillus genomic DNA; and 10 ×
PCR buffer, 1 mM MgCl2, 0.1 mM each of dATP, dGTP, dCTP,
and dTTP, 1 U of Taq DNA polymerase (all Applied Biosystems
Inc., Foster City, CA, USA).

For partial calM amplification, PCR was carried out in a ther-
mal cycler as follows: after an initial denaturation step of 95°C
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for 10 min, 38 cycles at 95°C for 30 s, 55°C for 30 s, and 72°C
for 1 min, and a final extension at 72°C for 7 min. For partial
benA amplification, PCR was carried out as follows: after an ini-
tial denaturation step of 94°C for 2 min, 30 cycles at 94°C for
30 s, 55°C for 30 s, and 72°C for 45 s, and a final extension at
72°C for 5 min. PCR products were confirmed by 2% agarose
gel electrophoresis and the purification of the PCR product was
made using the ExoSAP-IT enzyme system (USB Corporation,
Cleveland, OH, USA), according to the manufacturer’s instruc-
tions.

Sequencing was performed using the forward primers and the
BigDye terminator v 1.1 Cycle sequencing kit (Applied Biosys-
tems) in the thermal cycler with the following conditions: an ini-
tial denaturation at 96°C for 5 s, 30 cycles at 96°C for 10 s, 50°C
for 5 s and 60°C for 4 min, and a final extension at 72°C for
5 min. Sequences were analyzed with MEGA software version
10.0.5, and the obtained sequences were then compared with
those deposited in the GenBank database (Bethesda, MD, USA)
in order to achieve identification to species level.

Analysis of the genetic diversity of A. fumigatus

sensu stricto

All the identifiedA. fumigatus sensu stricto isolates (n= 34) were
evaluated regarding their genetic diversity. Isolates genotyping
was performed based on microsatellite markers, using the mul-
tiplex PCR M3 combination previously described,42 amplifying
three loci with trinucleotide repeats, with a calculated discrimi-
natory power of 0.9968. The three forward primers (STRAf 3A,
STRAf 3B, and STRAf 3C) were labeled at the 5′end with car-
boxyfluorescein (FAM), hexachloro carboxyfluorescein (HEX),
or dichloro carboxyfluorescein (NED), respectively.

PCR reactions were carried out in a 25 μl volume containing
1 × PCR buffer (Applied Biosystems Inc.), 1 μM of each primer
[STRAf 3A (Forward FAM-GCTTCGTAGAGCGGAATCAC
and reverse GTACCGCTGCAAAGGACAGT), STRAf 3B
(Forward HEX-CAACTTGGTGTCAGCGAAGA and reverse
GAGGTACCACAACACAGCACA), and STRAf 3C (Forward
NED-GGTTACATGGCTTGGAGCAT and reverse GTACA-
CAAAGGGTGGGATGG)], 0.2 mM deoxynucleoside triphos-
phates, 3.0 mM MgCl2, 1 U of Taq DNA polymerase (Applied
Biosystems Inc.), and 1 ng of genomic DNA. PCR conditions
were carried out in a thermal cycler as follows: after an initial
denaturation step of 95°C for 10 min, 30 cycles at 95°C for
30 s, 60°C for 30 s, and 72°C for 1 min, and a final extension
at 72°C for 10 min. A 15 μl of ultrapure formamide mixture
was added in 1 μl of PCR product, and then a denaturation
at 95ºC for 3 min was performed. After this step, analysis of
the fragments was performed by capillary electrophoresis in a
3500 Genetic Analyzer (Applied Biosystems) instrument, using
the molecular weight marker GeneScan 500 ROX Size Stan-
dard (Applied Biosystems), and the GeneMapper 6.0 software
(Applied Biosystems) was used for data analysis.

Alleles were designated by the fragment length of the result-
ing PCR product. The number of repeats of the STRAf 3A,
STRAf 3B, and STRAf 3Cmarkers were determined according to
de Valk et al.42 Simpson diversity index was calculated using
untb package, and the neighbor joining tree was constructed us-
ing the ape package, both in Rstudio® (Boston, MA, USA) soft-
ware. The genotypes obtained were compared with genotypes
of global population of A. fumigatus using the web-based pro-
gramme AfumID (https://afumid.shinyapps.io/afumID/).

Detection of azole-resistant strains

The azole-resistance screening method was performed in all A.
fumigatus sensu stricto strains based on the European Com-
mittee on Antimicrobial Susceptibility Testing (EUCAST) pro-
cedure.43,44 Three different supplemented Sabouraud dextrose
agar (SDA) plates were prepared, containing 4 mg/l itraconazole
(ICZ), 2 mg/l voriconazole (VCZ), and 0.5 mg/l posaconazole
(PCZ) in each. A 0.5 McFarland turbidity inoculum suspension
prepared from fresh conidia from a 5 to 7 day old culture was in-
oculated by dipping a sterile swab into the inoculum suspension
and swabbing the agar surface. Plates were incubated at 35ºC,
and observation of fungal growth was performed after 48 h of
incubation. A pan-azole resistant strain with known TR34/L98H
mutation45 was used as resistance control, and the A. fumiga-
tus strain ATCC 204305 was used as a susceptible control. Each
isolate suspension tested was inoculated onto a plate containing
Sabouraud Dextrose Agar without chloramphenicol and with-
out any antifungal drug, as a growth control. Those isolates
that were not able to grow in the plates with antifungal drugs
were considered as ‘susceptible’, and those that showed any
growth on antifungal-containing media,were selected for further
investigation.

Broth microdilution antifungal susceptibility testing

Isolates that grew in screening agar azole plates were tested by
broth microdilution test according to the M38 protocol of Clin-
ical Laboratory Standards Institute (CLSI 3rd Edition).46 Tested
antifungal concentrations ranged from 0.0156 to 8 μg/ml for all
drugs tested (ICZ, VCZ, PCZ). A. flavus strain ATCC 204 304
was used as control of drug potency. A standard conidial inocu-
lum was prepared from a conidial suspension with optical den-
sity ranging from 0.09 and 0.11 (80–82% transmittance), then
diluted 1:50 in RPMI-1640 media. An inoculum control was per-
formed by plating 100 μl of 10–2 dilution of the final suspension
of the standard conidia inoculum and incubated at 30ºC. Colony
forming units (CFU) were enumerated after 48 h incubation at
25ºC.

Tests were performed in a 96-well sterile microplate, in which
100 μl of the standard conidia inoculum was inoculated in each
well containing 100 μl of distributed drug. In each microplate,
a sterile media control and the inoculum growth control were
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Figure 1. Year of obtaining the Aspergillus clinical isolates collected from Magellanic penguins who died with aspergillosis during rehabilitation.

included. Visual reading of the results was performed after
48 h incubation at 35ºC, determining the minimum inhibitory
concentration (MIC) as the lowest concentration able to in-
hibit 100% of fungal growth. Tests were performed at least
in duplicate, and in case of conflicting results, a triplicate was
performed. The determination of azole-resistant strains followed
the MIC breakpoints for ICZ (>2 μg/ml), VCZ (>2 μg/ml), and
PCZ (>0.5 μg/ml) proposed based on the EUCAST protocol.47

Detection of mutations in the cyp51A gene conferring

azole resistance

Isolates that grew in the screening agar azole plates were
submitted to a multiplex real-time PCR assay for detection of
azole-resistant markers TR34/L98H and TR46/Y121F/T289A
(AsperGenius®, PathoNostics, Maastricht, Netherlands), per-
formed on the RotorGene Q instrument (Qiagen, Hilden, Ger-
many), following the manufacturer’s instructions. In addition,
the sequencing of the cyp51A gene and its promoter was per-
formed from an amplification reaction in a final volume of 25 μl
consisting of 20–50 ng of Aspergillus genomic DNA, 0.4 μM of
each primer [CYP51A-AF1 (5-ATGGTGCCGATGCTATGG-
3) and CYP51AR2 (5′-AGTGAATAGAGGAGTGAATCC-
3′)], and 2.5× PCR buffer, 2 mM MgCl2; 0.2 mM each of
dATP, dGTP, dCTP, and dTTP; 1 U of Taq DNA polymerase
(all Applied Biosystems). The PCR reaction was performed by an
initial denaturation step of 94°C for 5 min, followed by 35 cycles
at 94°C for 30 s, 65°C for 30 s, and 72°C for 1 min, and a final
extension at 72ºC for 7 min.48 Purification was performed as de-
scribed above. For each PCR product, four sequencing reactions
were performed, using two forward primers [CYP51AF1
and CYP51AF2 (5′-GACATCTCTGCGGCAATGG-3′)]
and two reverse primers [CYP51AR2 and CYP51AR3(5′-

CCATTGCCGCAGAGATGTC-3′)] following the sequencing
conditions described previously.

For sequencing the cyp51A promoter, the primers
PA5 (5′TCTCTGCACGCAAAGAAGAAC3′) and PA7
(5′TCATATGTTGCTCAGCGG3′)49 were used, following
the same volume reactions as described for amplification of
cyp51A. PCR conditions were an initial denaturation at 94°C
for 5 min, 30 cycles at 94°C for 30 s, 66°C for 45 s, and 72°C
for 2 min, and a final extension at 72°C for 7 min. PCR product
confirmation, purification, and sequencing were performed
as described above, using both forward and reverse primers.
The editing of nucleotide sequences, assembly of the consensus
sequences and alignment, was performed using MEGA software
version 10.0.5.

Results

Clinical isolates recovered from penguins

Aspergillus isolates were obtained from penguins that died from
2008 to 2019, with 70% of those isolates corresponding to the
years 2008 (13/34) and 2011(11/34) (Fig. 1). From a total of 34
cases, at least (data regarding prophylaxis were missing in some
cases) 39% (n = 12) of these penguins received ICZ at 20 mg/kg
for 15 days during rehabilitation as an antifungal prophylaxis.

Species identification and microsatellite genotyping

of the Aspergillus isolates

All clinical isolates, from free-ranging penguins (n = 3) and from
captive penguins (n = 31), were molecularly identified as A.
fumigatus sensu stricto, showing more than 99% homology with
the reference sequence NC_007194 from the Genbank.
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Table 1. Alleles of Aspergillus fumigatus sensu stricto isolated from Magellanic penguins with proven aspergillosis, obtained from three

different loci (STRAf3A, STRAf3B and STRAf3C).

Microsatellite designation Number of alleles Minimum fragment size Maximum fragment size Number of repeats (range)

STRAf3A 16 128.89 295.34 6 - 61
STRAf3B 12 147.86 225.01 4 - 32
STRAf3C 18 70.85 171.39 3 - 35

Data for each allele are presented in fragment length and number of repeats.

Figure 2.Dendrogram showing clustering of clinical Aspergillus fumigatus isolates obtained from penguins with aspergillosis, based onmicrosatellite multilocus

genotyping. Genetic distances were calculated by ape package in Rstudio® software programme and clustering performed by using neighbor-joining tree esti-

mation of Saitou and Nei (1987).69 Isolate identification is followed by date of isolation in brackets. Isolates marked with * correspond to free-ranging penguins.

D.M–Data missing.

Microsatellite data analysis showed 24 different multi-
locus genotypes (Simpson’s diversity index = 0.9340463),
obtained with 16 alleles for STRAf3A loci (Simpson’s diversity
index = 0.9322638), 12 alleles for STRAf3B loci (Simpson’s di-
versity index = 0.8877005), and 18 alleles for STRAf3C loci
(Simpson’s diversity index = 0.9358289) (Table 1).

Genetic clustering, based on microsatellite multilocus geno-
typing, of clinical A. fumigatus isolates obtained from penguins
who died of aspergillosis showed that five genotypes were com-
mon to more than one isolate. Two to four isolates were grouped
and considered identical (Fig. 2).

Excluding one multilocus genotype (207.20/222.19/102.47),
all the other identical multilocus genotypes were collected in
captive penguins from the years 2008 and 2011. These were

the years when the highest number of isolates was obtained
(Table 2). About 50% of the A. fumigatus multilocus geno-
types described in 2008 were identified in more than one indi-
vidual (two to three isolates sharing identical multilocus geno-
types were collected from different penguins) and in 2011, three
isolates shared the same multilocus genotype. All birds with A.
fumigatus isolates with common multilocus genotypes shared
the captivity facilities in the same period. Comparing the global
population of A. fumigatus with our data, none of our isolates
shared identical genotypes with Aspergillus reported in other
countries. In addition, based on information obtained from Afu-
mID’ programme, 7 of our 24 multilocus genotypes were related
with isolates from the resistant global population ofA. fumigatus
(Fig. 3).
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Table 2. Microsatellite multilocus genotypes (fragment length) of Aspergillus fumigatus sensu stricto isolated from Magellanic penguins

that died of aspergillosis, compared with global population.

Multilocus
genotyping

Penguin ID

Year of
rehabilita-

tion/isolation
of Aspergillus STRAf3A

Number of
repeats STRAf3B

Number of
repeats STRAf3C

Number of
repeats

AfumID
match

1517D 2008 216.18 35 193.78 20 139.42 25 NM
1715 2008 195.20 28 216.60 28 86.59 8 NM*
1765 2008 198.13 29 182.30 16 102.27 13 NM
1784C 2008 207.18 32 222.13 30 102.26 13 NM
1834 2016 207.21 32 159.14 8 149.73 28 NM
1890B 2008 201.16 30 182.32 16 102.27 13 NM
1921 2008 207.16 32 159.27 8 146.36 27 NM
1933E 2008 295.34 61 164.96 10 168.45 34 NM*
2001A 2008 195.30 28 159.14 8 76.83 5 NM*
2005E 2008 295.31 61 165.00 10 168.4 34 NM*
2006B 2008 201.16 30 182.3 16 102.27 13 NM
2007D 2008 216.24 35 193.84 20 139.41 25 NM
2012D 2008 216.18 35 193.76 20 139.42 25 NM
2115 2009 128.89 6 165.10 10 139.41 25 NM
2156 2010 207.16 32 167.84 11 120.51 19 NM
2281E 2011 295.32 61 164.98 10 168.49 34 NM*
2366 2011 148.79 13 179.49 15 123.74 20 NM
2431 2011 283.07 57 170.85 12 96.25 11 NM
2452 2011 216.12 35 167.91 11 96.06 11 NM
2476A 2011 195.20 28 159.14 8 76.69 5 NM*
2496 2011 148.78 13 196.59 21 114.31 17 NM
2507 2011 136.58 9 147.86 4 70.85 3 NM*
2514A 2011 195.22 28 159.14 8 76.70 5 NM*
2519 2011 161.58 17 165.68 10 105.34 14 NM*
2554D 2011 216.20 35 193.78 20 139.42 25 NM
2557A 2011 195.30 28 159.15 8 76.71 5 NM*
3046 2014 204.19 31 173.68 13 171.39 35 NM
3118C 2015 207.20 32 222.19 30 102.47 13 NM
3384 2016 183.14 24 168.63 11 89.72 9 NM
3484 2017 210.19 33 225.01 32 108.39 15 NM
SA D.M 198.12 29 165.00 10 105.15 14 NM*
3628 2019 225.16 38 165.07 10 102.37 13 NM*
3963 2019 198.11 29 164.89 10 136.09 24 NM
4563 2019 179.99 23 168.59 11 93.13 10 NM

Identical superscript letters correspond to identical multilocus genotype; D.M–Data missing; NM–No match with global population of Aspergillus fumigatus, isolate mostly
associated with other isolates from the non-resistant population; NM*–No match with global population of Aspergillus fumigatus, isolate mostly associated with other isolates
from the resistant population.

Antifungal susceptibility patterns and molecular

mechanisms of azole resistance

From all 34 A. fumigatus sensu stricto screened for resistance in
azole-supplemented agar media, three (all of them from captive
penguins) showed some minor growth in the ICZ-supplemented
media (isolates #2007, #2507 and #3118), therefore selected for
further characterization. Two of them were collected from pen-
guins that received ICZ prophylaxis. By the microdilution broth
test, one of these three isolates (isolate #3118, the one collected
from a penguin without antifungal prophylaxis) showed resis-
tance to PCZ (MIC = 2.0 mcg/ml to ICZ, 1.0 mcg/ml to PCZ,
and 0.5 mcg/ml to VCZ). The other two were susceptible for all

the azoles tested (MIC = 1.0 mcg/ml to ICZ, 0.5 mcg/ml to PCZ,
and 0.5 mcg/ml to VCZ, for both).

No mutations were detected in the multiplex real-time PCR
assay for azole resistance markers in any of the three selected
isolates. Analyzing the nucleotide sequencing of cyp51A and its
promoter, only the PCZ-resistant strain (#3118) showed several
nucleotide mutations, resulting in four amino acid substitutions
F46Y/N248T/D255E/M172V.

Discussion

We performed a study of molecular epidemiology of A. fumi-
gatus clinical isolates from Magellanic penguins. Microsatellite
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Figure 3. Distribution of Aspergillus fumigatus isolates from penguins with proven aspergillosis (in black), among a global population of 4049 (described by

Sewell et al., 2019).70 Isolates mostly associate with non- resistant population (in orange) and mostly associate with azole-resistant population (in blue). The

figure was built using the web-based progamme AfumID (https://afumid.shinyapps.io/afumID/).

genotyping of those isolates was performed, and the suscep-
tibility profile to ICZ, VCZ, and PCZ was evaluated, with
characterization of the molecular sequence of the cyp51A gene
as well. To the best of our knowledge, this is the first work
on molecular identification Aspergillus species collected from
Magellanic penguins with proven aspergillosis and their mi-
crosatellite genotyping. These data are important for a better
understanding of the molecular epidemiology of this disease in
these animals and also in the One Health Context.50

Our study showed that all penguins suffered from as-
pergillosis caused by A. fumigatus sensu stricto, reinforcing
the relevance of this species as the main fungal pathogen
for penguins, as already described for other birds and hu-
mans.51,52 No cryptic species belonging to section Fumigati
were identified in this study, including the three isolates
recovered from free-living penguins. Several factors may fa-
vor the infection of the penguins by this species, including
the higher thermotolerance of A. fumigatus sensu stricto.53

The body temperature of these birds normally varies be-
tween 39 and 41 degrees Celsius, which favors the growth
of A. fumigatus sensu stricto. In addition, this fungal species
produces high levels of gliotoxin, to which its greater virulence
is attributed.15,54

Regarding the genotyping of those A. fumigatus sensu stricto
isolates, it was observed that the majority of clonal A. fumiga-
tus were isolated from penguins that shared the captivity facili-
ties at the same period. This finding suggests the occurrence of
outbreaks during the penguins’ rehabilitation. Of those clonal
isolates, 70% were recovered during the 2 years with the highest
density of penguins at the rehabilitation center,1 which would in-
crease the load of environmentalAspergillus, due to higher avail-

ability of organic matter (penguins feces), higher humidity due
to the systematic cleaning of the facilities, and maintenance of a
warm temperature to better acclimatize the penguins.

One of the major limitations of this study is the
impossibility to characterize and genotype the environmental A.
fumigatus isolates collected during the penguins’ rehabilitation.
Those isolates were collected55,56 but are not available anymore.
However, the occurrence of clonal strains among penguins’
clinical isolates reinforces the idea that the rehabilitation en-
vironment can be considered a potential source of infection.6

The probable maintenance of some clonal strains in the envi-
ronment of the rehabilitation center for a long period, verified
by the detection of two multilocus genotypes (195/159/76 and
216/193/139) in 2008 and again in 2011, and of another one
(207/222/102) in 2008 and again in 2015, is suggested by
epidemiological studies in other environments.39,57 Even with
the adoption of measures to control the fungal load in the
environment,2,58 it is impossible to achieve a total success, in
particular in these places where several animals are kept at the
same time, and with different management areas.

Regarding the occurrence of the identical multilocus genotype
(207/222/102) in penguins #1784 (wild-type) and #3118 (resis-
tant to PCZ) (both died within 2 days in captivity) we could raise
two hypotheses. The first one is that these were related strains
that had undergone mutations related to antifungal resistance,59

considering the long time between isolations (7 years); or, despite
the high discriminatory power of the genotyping method applied
(0.9968), they could be unrelated isolates that the technique was
not able to discriminate.42

Although almost half of the penguins had received antifun-
gals as prophylaxis, no phenotypic resistance was observed in
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the majority of the isolated A. fumigatus sensu stricto strains.
In Magellanic penguins, guidelines for rehabilitation include
prophylaxis for aspergillosis, with ICZ at 20 mg/kg/day for 15
days from the beginning of the rehabilitation process.1 The use
of azoles as prophylaxis in distressed penguins, as well as the
treatment of aspergillosis in penguins in captivity, are very com-
mon.60,61 Data obtained in this study suggest that the prophy-
laxis applied to these animals may not have been a relevant factor
contributing to the emergence of resistance, maybe because,
unlike treatment, prophylaxis is not performed for long periods.

Although seven genotypes described in this study were mostly
associated with azole-resistant global populations, none of the
isolates showed phenotypic pan-azole resistance, and in accor-
dance with these findings, no TR mutation19 was detected in
real-time PCR or by cyp51A sequencing. The amino acid substi-
tutions in cyp51A gene demonstrated in the A. fumigatus sensu
stricto isolate resistant to PCZ have already been reported in a
pan azole-resistant isolate.62 However, the combination of these
substitutions does not seem to be related to azole resistance,
since they were also found several times in different suscepti-
ble strains.62–64 Thus, probably other mechanisms, such as efflux
pumps,65 or mutations in other genes66–68 could be associated
with the lower susceptibility of this isolate to PCZ.

This study showed that A. fumigatus sensu stricto is the most
important etiologic agent of aspergillosis in Magellanic pen-
guins. The outbreaks detected during penguins’ rehabilitation
and the observation of the environmental maintenance of some
Aspergillus multilocus genotypes through the years are novel in
the scientific literature. This report also contributes important
data for a better understanding of the molecular epidemiology
of aspergillosis in penguins. Data regarding antifungal resistance
profiles reported in this study suggest that prophylaxis per-
formed in these animals during rehabilitation may not markedly
impact the emergence of resistance. Since prophylaxis could be
related to better outcomes in penguin rehabilitation, its use may
proceed, but preferably with a systematic surveillance for azole
resistance.
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