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ABSTRACT Fungi, bacteria, and plants, but not animals, synthesize the branched-chain
amino acids: leucine, isoleucine, and valine. While branched-chain amino acid (BCAA)
biosynthesis has been well characterized in the yeast Saccharomyces cerevisiae, it is
incompletely understood in filamentous fungi. The three BCAAs share several early bio-
synthesis steps before divergence into specific pathways. In Aspergillus nidulans, the
genes for the first two dedicated steps in leucine biosynthesis have been characterized,
but the final two have not. We used sequence searches of the A. nidulans genome to
identify two genes encoding b-isopropylmalate dehydrogenase, which catalyzes the
penultimate step of leucine biosynthesis, and six genes encoding BCAA aminotransfer-
ase, which catalyzes the final step in biosynthesis of all three BCAA. We have used com-
binations of gene knockouts to determine the relative contribution of each of these
genes to BCAA biosynthesis. While both b-isopropylmalate dehydrogenase genes act in
leucine biosynthesis, the two most highly expressed BCAA aminotransferases are respon-
sible for BCAA biosynthesis. We have also characterized the expression of leucine bio-
synthesis genes using reverse transcriptase-quantitative PCR and found regulation in
response to leucine availability is mediated through the Zn(II)2Cys6 transcription factor
LeuB.

IMPORTANCE Branched-chain amino acid (BCAA) biosynthesis is important for patho-
genic fungi to successfully cause disease in human and plant hosts. The enzymes for
their production are absent from humans and, therefore, provide potential antifungal
targets. While BCAA biosynthesis is well characterized in yeasts, it is poorly understood
in filamentous fungal pathogens. Developing a thorough understanding of both the
genes encoding the metabolic enzymes for BCAA biosynthesis and how their expression
is regulated will inform target selection for antifungal drug development.
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The branched-chain amino acids (BCAA) leucine, isoleucine, and valine are essential
dietary amino acids in mammals. Leucine levels provide an acute signal for nutrient

availability to control the protein kinase mTORC1 (mammalian Target of Rapamycin
Complex 1), which is a pleiotropic regulator of many cellular processes, including cell
growth, protein biosynthesis, the response to nutrient availability, and autophagy (1,
2). Unlike mammals, fungi synthesize BCAA for use in protein biosynthesis and as pre-
cursors for secondary metabolites (3). BCAA biosynthesis genes also play important
roles during infection for fungal pathogens. BCAA auxotrophs in the opportunistic
human fungal pathogens Cryptococcus neoformans, Candida albicans, and Aspergillus
fumigatus show decreased pathogenicity (4–9), and the plant pathogens Magnaporthe
oryzae and Fusarium graminearum require BCAA biosynthesis genes for full virulence
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(10–15). Therefore, the enzymes for BCAA biosynthesis are potential drug and antifun-
gal agent targets.

Synthesis of the three BCAAs occurs via a dichotomous biochemical pathway and is
well characterized in Saccharomyces cerevisiae (16). Studies of BCAA biosynthesis in A.
fumigatus, Aspergillus niger, and Aspergillus nidulans have revealed both divergence
from and similarity to S. cerevisiae (5, 17–20). For example, both A. nidulans and S. cere-
visiae encode a single a-isopropylmalate isomerase (19, 21). A. fumigatus encodes two
functional dihydroxyacid dehydratases (5), whereas S. cerevisiae encodes only one (22),
whereas the production of a-isopropylmalate (a-IPM) in S. cerevisiae is carried out by
two a-IPM synthetases, encoded by LEU4 and LEU9 (23–26), but only a single gene in
A. nidulans, leuC, encodes a functional LEU4/LEU9 ortholog (27). The final two steps in
leucine biosynthesis are catalyzed sequentially by b-isopropylmalate (b-IPM) dehydro-
genase and the bidirectional BCAA aminotransferase (BAT), which also produces isoleu-
cine and valine and catalyzes the first step in BCAA catabolism (28). Although the
genes encoding these enzymes have been characterized in S. cerevisiae, their A. nidu-
lans orthologs are unknown.

Leucine biosynthesis in A. nidulans is thought to be regulated by the Zn(II)2Cys6
transcription factor LeuB (19). LeuB regulates target genes through either consensus
CCGN4CGG DNA-binding sites, like its S. cerevisiae counterpart Leu3p, or a nonconsen-
sus CCGN5CGG motif, which is also the target of TamA (27, 29). Regulation by LeuB and
Leu3p is controlled by feedback inhibition through intracellular levels of free leucine
(19, 27, 30). When leucine is abundant, it interacts with the a-IPM synthetase Leu4p to in-
hibit its activity and decrease production of the leucine biosynthesis pathway intermediate
a-IPM (31). Leu3p acts as a repressor when a-IPM levels are low but is converted to an acti-
vator by binding of a-IPM (32). A. nidulans leucine biosynthesis loss-of-function mutants
luA1 (affecting a-IPM isomerase) and leuCD (affecting a-IPM synthetase), which are pre-
dicted to have increased or decreased a-IPM levels, respectively, show that LeuB responds
similarly to Leu3p (27). This mechanism is conserved in A. fumigatus LeuB, which regulates
leucine biosynthesis and iron acquisition genes (9, 33).

In addition to regulating leucine biosynthesis genes, Leu3p and LeuB regulate expres-
sion of their respective NADP-dependent glutamate dehydrogenase (NADP-GDH)-encod-
ing genes, GDH1 and gdhA (9, 19, 33, 34). Consistent with feedback inhibition of leucine
biosynthesis through LeuB, exogenous leucine also negatively affects A. nidulans gdhA-
lacZ reporter gene expression (27). NADP-GDH assimilates nitrogen nutrients producing
glutamate, which is the amino donor in the final step of leucine biosynthesis. Coregulation
of NADP-GDH production by the leucine pathway transcription factor is thought to ensure
glutamate levels sufficient to sustain leucine production (16). It has been suggested that,
through the feedback mechanisms provided by leucine levels and the coregulation of
NADP-GDH expression, leucine, which is one of the most common protein-incorporated
amino acids and one of the least abundant free cellular amino acids, acts as a general sen-
sor for amino acid abundance (16).

The A. nidulans leucine biosynthesis pathway genes encoding a-IPM synthase (leuC)
and a-IPM isomerase (luA) have been characterized previously (19, 27). In this study, we
characterize the two genes encoding b-IPM dehydrogenases and six genes predicted to
encode branched-chain amino acid aminotransferases, which together constitute the
final two steps of the leucine biosynthesis pathway in A. nidulans. We demonstrate roles
for both b-IPM dehydrogenase genes and reveal that only two of the six branched-chain
amino acid aminotransferases are major contributors to BCAA production. We have also
investigated the regulation of these genes by LeuB and leucine.

RESULTS
Identification of the two A. nidulans b-isopropylmalate dehydrogenase genes.

The penultimate step in leucine biosynthesis is catalyzed by b-IPM dehydrogenase
(Fig. 1). A single gene in yeast, LEU2, encodes b-IPM dehydrogenase (35, 36), whereas
in A. niger, two enzymes, Leu2A and Leu2B, encoded by separate genes, carry out this
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role (18). Two A. nidulans b-IPM dehydrogenase enzymes, encoded by AN0912 and
AN2793, were identified in BLASTp searches with S. cerevisiae Leu2p as the query.
AN0912 and AN2793 showed high levels of similarity and identity with Leu2p, Leu2A,
and Leu2B, with AN0912 most similar to Leu2A and AN2793 most similar to Leu2B
(Table 1). AN0912 and AN2793 showed 50.5% identity and 67.3% similarity with each
other. Alignment of the five proteins revealed strong conservation throughout the pro-
tein, including in the substrate binding loop and NAD binding motif (see Fig. S1 in the
supplemental material). We designated AN0912 leuD and AN2793 leuE. leuD is found
on chromosome VIII in a region of highly conserved gene colinearity in all 27 Aspergillus
species genomes available at FungiDB (Fig. S2A). In contrast, leuE is located on chromo-
some VI and lacks colinearity with its 24 orthologs in the 27 Aspergillus species (Fig. S2B).

We investigated the relationships of the two A. nidulans b-IPM dehydrogenase
genes through construction of a phylogenetic tree (Fig. 2). LeuD and LeuE formed dis-
tinct clades with their respective Aspergillus orthologs. The LeuD clade is consistent
with the position of A. nidulans in the fungal evolutionary tree (37), whereas the LeuE
clade lies between the Ascomycota and the Basidiomycota clades.

leuD and leuE both function in leucine biosynthesis. To determine whether leuD
and leuE are functional genes, we generated deletion mutants by gene replacement
(Fig. S3A; see Materials and Methods). Deletion of genes required for leucine biosynthe-
sis results in leucine auxotrophy (19, 27), yet neither leuDD nor leuED strain conferred strict

TABLE 1 Pairwise protein sequence comparisons of b-IPM dehydrogenases

Proteina Systematic name

Leu2p Leu2A Leu2B

% Identity % Similarity % Identity % Similarity % Identity % Similarity
Leu2p YCL018W 100 100 NDb ND ND ND
LeuD AN0912 62.8 79.6 87.7 94.5 50.7 66.3
LeuE AN2793 50.1 64.8 53.3 67.7 84.9 92.2
aA. nidulans LeuD and LeuE b-IPM dehydrogenase full-length protein sequences were aligned pairwise and compared with S. cerevisiae Leu2p and A. niger Leu2A and
Leu2B.

bND, not determined.

FIG 1 Leucine biosynthesis in Aspergillus nidulans. Pathway of committed leucine (Leu) biosynthesis
enzymes (rounded rectangles). The stages involving generation of a-isopropylmalate (a-IPM) from
a-ketoisovalerate (KIV) by a-IPM synthetase (LeuC) and subsequent conversion to b-isopropylmalate
(b-IPM) by a-IPM isomerase (LuA) have previously been characterized. The two b-IPM dehydrogenase
enzymes (LeuD and LeuE), which generate a-ketoisocaproate (KIC), and two BCAA aminotransferases
(BatA and BatB), which also function in isoleucine and valine biosynthesis and isoleucine, leucine, and
valine (ILV) catabolism, were characterized in this work from eight candidate coding genes.

Leucine Biosynthesis in Aspergillus nidulans ®

May/June 2021 Volume 12 Issue 3 e00768-21 mbio.asm.org 3

https://mbio.asm.org


leucine auxotrophy (Fig. 3A). However, while the leuED strain grew similarly to the wild type
in the absence of leucine, the leuDD mutant showed reduced growth compared with the
wild type unless supplemented with exogenous leucine. Transformation of the leuD gene
into the leuDD mutant restored leucine prototrophy (Fig. S4A). To determine whether the
leaky nature of the leuDD leucine auxotrophy resulted from LeuE activity, we constructed a
leuDD leuED double mutant by meiotic crossing and found that the double mutant was a
strict auxotroph, showing growth only when supplemented with exogenous leucine
(Fig. 3A). Leucine supplementation of a C. neoformans auxotroph lacking a-IPM isomerase is
possible when glutamine or asparagine, but not ammonium, is the nitrogen source (6). In
contrast, the leuCD mutant lacking a-IPM isomerase can be supplemented on ammonium
(27). Likewise, the leuDD leuED leucine auxotrophy could be supplemented on the preferred
nitrogen sources ammonium and glutamine and on the alternative nitrogen source nitrate
(Fig. 3A). Therefore, regulation of leucine uptake in A. nidulans is not regulated by nitrogen
metabolite repression.

To complement the tight leucine auxotrophy of the leuDD leuED double mutant,
we introduced a plasmid carrying the wild-type leuE gene and directly selected trans-
formants in the absence of leucine (Fig. S4B to D). Single-copy integration conferred
partial leucine auxotrophy that resembled the leuDD single mutant, whereas multicopy
transformants showed stronger growth, indicating that additional copies of the leuE
gene partially suppress the leuDD phenotype. We next considered whether levels of
expression were the source of the different degrees of effect of leuDD and leuED. We

FIG 2 Phylogenetic analysis of b-IPM dehydrogenases. Unrooted phylogeny of b-IPM dehydrogenases is
shown. Bootstrap support (100 replicates) greater than 40% is shown. Protein sequences for A. nidulans were
downloaded from AspGD, sequences for S. cerevisiae were downloaded from SGD, and all other sequences
came from Pfam or NCBI. Archaea, Sulfolobus solfataricus (Q9UXB2.1); Bacteria, Corynebacterium ammoniagenes
(D5NZR1.1), Klebsiella aerogenes (WP_077203698.1), Streptococcus mutans (Q8DTG3.1), Saccharomonospora
cyanea (H5XNC6.1); Basidiomycota (Basid.), Coprinopsis cinerea (A8NYJ8.1), Cryptococcus neoformans (Q5KP37.1),
Ustilago maydis (1, XP_011387179.1; 2, XP_011391948.1); Ascomycota (Asc.), A. fumigatus Leu2A (Q4WRM6.1),
Leu2B (Q4WLG7.1), A. nidulans LeuD (AN0912), LeuE (AN2793), A. niger Leu2A (P87256.1), Leu2B (P87257.1),
A. oryzae (1, Q2TYA5.1; 2, Q877A9.1), Botrytis cinerea (XP_001546815.1) Candida albicans (C4YTB1.1), Fusarium
fujikuroi (C1L3C2.1), M. oryzae (1, G4N5B0.1; 2, G4NIK0.1), Neurospora crassa (P34738.2), Saccharomyces
cerevisiae Leu2p (YCL018W), Schizosaccharomyces pombe (P18869.1); Planta, Chlamydomonas reinhardtii
(1, A8I7N4.1; 2, A8I7N8.1). The scale bar corresponds to the branch length for an expected number of 0.1
substitutions per site. The two distinct Aspergillus clades are boxed.
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found, using reverse transcription-quantitative PCR (RT-qPCR), that leuD had ;64-fold
higher expression than leuE after 16 h of growth in 10mM ammonium-minimal me-
dium. In transcriptome sequencing (RNA-seq) data from wild-type mycelia, leuD
showed higher expression than leuE when grown on ammonium (35-fold), alanine (12-
fold), and glutamine (13-fold) (Fig. 3B). As leucine production is regulated by feedback
inhibition, we examined the effect of the leuDD mutation on expression of leuE and
two other leucine biosynthesis genes, luA and leuC, by RT-qPCR, and gdhA, which is
coregulated with leucine biosynthesis, using enzyme activity of LacZ expressed from
the gdhA-lacZ translational fusion reporter gene (19, 27). For all three leucine biosyn-
thesis genes, and for gdhA-lacZ, we found that leuDD resulted in increased expression
over wild-type levels (Fig. 3C and D). Therefore, reduced leucine production as a result
of leuDD results in compensation by upregulation of leuE and the other leucine biosyn-
thesis genes as well as gdhA.

As leuED had no effect on growth and leuE upregulation in the leuDD deletion mu-
tant is expected to be LeuB dependent, we constructed a leuBD leuDD double mutant
(Fig. 3A). In contrast to the leuBD and leuDD single mutants, which are leaky leucine
auxotrophs, the leuBD leuDD double mutant is a strict leucine auxotroph, suggesting

FIG 3 leuD encodes the major b-IPM dehydrogenase. (A) Wild-type (MH1), leuDD (RT411), leuED
(RT413), leuDD leuED (RT444), leuBD (RT452), and leuBD leuDD (RT460) strains were grown at 37°C for
2 days on solid supplemented ANM with or without 2mM leucine (Leu) and with 10mM ammonium
(NH4), glutamine (Gln), and nitrate (NO3) as the nitrogen source. Note that the yellow colony color of
RT460 is due to the yA1 conidial color mutation and is unrelated to the leuBD leuDD phenotype. (B)
Mean reads per kilobase per million mapped reads (RPKM) from RNA-seq of MH1 grown at 37°C for
16 h in supplemented liquid ANM with 10mM ammonium (NH4), glutamine (Gln), and alanine (Ala).
(C) RT-qPCR quantification of mean fold change in transcript expression in leuDD (RT411) strain
compared to the wild type (MH1) grown at 37°C for 16 h in supplemented liquid ANM–10mM
ammonium and 2mM leucine. Bars indicate the mean fold change from three independent biological
replicates (circles). *, P# 0.05. NS, not significant using two-tailed Student's t test with equal
distribution. (D) LacZ specific activity for wild-type (MH12101), leuBD (MH12181), leuDD (RT458), and
leuBD leuDD (RT460) strains, which contain the 2753 bp gdhA-lacZ reporter construct. Strains were
grown at 37°C for 16 h in supplemented liquid ANM with 10mM ammonium and 2mM leucine
(n= 3). *, P# 0.05; **, P# 0.001; ***, P# 0.0001; NS, not significant; using one-way ANOVA. For panels
B to D, error bars depict standard error of the mean (N= 3).
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that LeuB regulation of leuE is required for leucine biosynthesis in the absence of leuD.
We assayed gdhA-lacZ reporter gene expression in the double mutant (Fig. 3D). Unlike
the single leuDD mutant, there was no increase in expression above leuBD levels in the
double mutant, consistent with the leuDD-induced upregulation of leucine biosynthe-
sis genes occurring through LeuB.

Identification of six branched-chain amino acid aminotransferase genes. The
final step in leucine biosynthesis, catalyzed by the BCAA aminotransferase (BAT), is
common to isoleucine and valine biosynthesis (Fig. 1). In S. cerevisiae, BAT enzymes are
encoded by two genes, BAT1 and BAT2 (38, 39). Six BAT enzymes predicted to catalyze
this step have been previously identified in A. nidulans (20). We confirmed the identity
of these six BATs, and their coding genes, using BLASTP analysis and designated them
BatA (AN4323), BatB (AN5957), BatC (AN7878), BatD (AN7876), BatE (AN0385), and BatF
(AN8511). Pairwise protein sequence comparisons with Bat1p and Bat2p revealed
.21% identity and .31% similarity to both proteins (Table 2). Alignment of these
eight proteins showed strong conservation of NAD cofactor binding residues and abso-
lute conservation of the catalytic lysine residue (Fig. S5). The two S. cerevisiae BATs
function in different subcellular compartments. Bat1p is primarily targeted to mito-
chondria, whereas Bat2p is cytoplasmic (39). To predict the subcellular location of the
six A. nidulans BAT enzymes, we used DeepLoc-1.0, TargetP v1.1, and Predotar target-
ing signal predictions (40–43). For all three algorithms, BatA and BatC, like Bat1p, were
predicted to be predominantly mitochondrial, and the remaining BAT enzymes were
predicted by DeepLoc-1.0 to localize in the cytoplasm (Data Set S1). The BAT protein
alignment revealed that Bat1p, BatA, and BatC have extended N termini containing a
predicted mitochondrial targeting signal (Fig. S5).

We examined the colinearity of genes surrounding each of the six A. nidulans BAT-
encoding genes to identify orthologous genes (Fig. S6). batA and batB orthologs are
conserved in regions of high colinearity in all 27 species. batE orthologs are found in a
region of moderate colinearity in 13 species. In contrast, batC, batD, and batF were
located in regions lacking colinearity. batD only had orthologs in A. niger and A. oryzae,
whereas batC and batF have no predicted ortholog. Interestingly, two of the BAT-
encoding genes, batC and batD, are separated by just 2 kbp within the aspercryptins
secondary metabolite gene cluster (44–47). The tight physical linkage of these two
genes suggests that they arose from gene duplication by unequal crossover and, there-
fore, would show high sequence homology. However, the proteins encoded by these
genes are highly diverged, showing only 28.9% protein sequence identity.

To determine the relationship of the six A. nidulans BATs, we performed phyloge-
netic analysis (Fig. 4). The BATs formed two distinct groups within the fungi. Group I,
the larger group containing 37 out of 52 of the fungal BATs, included BatA, BatB, BatC,
and S. cerevisiae Bat1p and Bat2p, as well as at least one protein from every other fun-
gus examined. Group II was a smaller group, with only 15 of the 52 proteins, and was
almost entirely composed of BAT enzymes from Pezizomycotina genera (Aspergillus,

TABLE 2 Pairwise protein sequence comparisons of BATs

Proteina Systematic name

Bat1p Bat2p

% Identity % Similarity % Identity % Similarity
Bat1p YHR208W 100 100 73.5 81.2
Bat2p YJR148W 73.5 81.2 100 100
BatA AN4323 49.3 59.7 49.0 59.2
BatB AN5957 40.5 54.4 43.4 58.6
BatC AN7878 44.9 62.9 45.8 59.9
BatD AN7876 24.3 41.3 23.8 41.4
BatE AN0385 24.2 36.6 24.9 39.0
BatF AN8511 21.7 31.8 25.1 35.8
aA. nidulans BatA, BatB, BatC, BatD, BatE, and BatF branched-chain amino acid aminotransferase full-length
protein sequences were aligned pairwise and compared with S. cerevisiae Bat1p and Bat2p.

Steyer et al. ®

May/June 2021 Volume 12 Issue 3 e00768-21 mbio.asm.org 6

https://mbio.asm.org


FIG 4 Phylogeny of BCAA aminotransferases. Unrooted phylogeny of BCAA aminotransferases. Bootstrap support
(100 replicates) greater than 40% is shown. Protein sequences for aspergilli were downloaded from AspGD, sequences
for S. cerevisiae were downloaded from SGD, and all other sequences came from Pfam or NCBI. Archaea,
Methanocaldococcus infernus (D5VSZ6.1); Bacteria, Bacillus subtilis (1, O31461.1; 2, P39576.5), Streptomyces clavuligerus
(B5H0M8.1), S. cyanea (H5XQS6.1), Xanthomonas gardneri (F0C966.1); Basidiomycota (Basid.), C. cinerea (1, A8N0B4.2; 2,
A8N0V2.2), C. neoformans (1, Q5K761.1; 2, Q5KD20.1), U. maydis (1, XP_011386074.1; 2, NC_026478.1:289079-290305; 3,
CM003140.1:289079-290305); Ascomycota, A. fumigatus (1, Afu4g06160; 2, Afu2g10420; 3, Afu1g01680), A. nidulans
(BatA, AN4323; BatB, AN5957; BatC, AN7878; BatD, AN7876; BatE, AN0385; BatF, AN8511), A. niger (1, An04g00430; 2,
An02g06150; 3, An09g01990; 4, An10g00620; 5, An01g06530; 6, An05g01100), A. oryzae (1, AO090023000977; 2,
AO090011000598; 3, AO090023000123; 4, AO090011000044; 5, AO090005000936), C. albicans (1, Q59YS9.1; 2, Q5AHJ9.1;
3, Q5AHX4.1), Fusarium oxysporum (1, F9FH16.1; 2, F9FH71.1; 3, F9FL84.1; 4, F9FPH4.1), M. oryzae (1, G4MK83.1; 2,
G4MNR9.1; 3, G4NDD5.1), N. crassa (1, Q9HEB7.2; 2, Q7SFT9.2; 3, Q7S699.1; 4, Q1K779.1), S. cerevisiae (Bat1p, YHR208W;
Bat2p, YJR148), S. pombe (O14370.2), Kluyveromyces lactis (XP_451451.1), Saccharomyces kluyveri (1, CM000688.1:1070225-
1071418; 2, CM000688.1:c1071418-1070225), and Talaromyces marneffei (1, XP_002144420.1; 2. XP_002147519.1; 3. XP
_002148544.1; 4. XP_002148548.1; 5. XP_002152979.1). The scale bar corresponds to the branch length for an expected
number of 0.1 substitutions per site. The two distinct fungal BAT clades are boxed.
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Penicillium, Fusarium, Neurospora, Magnaporthe) and lacked any Saccharomycotina genera
(Saccharomyces, Candida). Notably, BatC is in group I and BatD is in group II, consistent with
separate recruitment to the aspercryptins cluster.

Genetic analysis of six A. nidulans BATs. The expansion of the number of BAT-
encoding genes in A. nidulans indicates specialization for the production of isoleucine,
leucine, or valine by specific BATs or the evolution of completely new roles. To deter-
mine which BAT-encoding genes were required for BCAA biosynthesis, we constructed
individual knockout mutants of each of the six BATs (Fig. S3B; see Materials and
Methods). Growth tests of the six individual bat knockout mutants showed none were
BCAA auxotrophs (Fig. 5A). Therefore, each of the six BATs is dispensable for BCAA bio-
synthesis. During this study, the two BAT genes found in the aspercryptins gene cluster batC
(AN7878) and batD (AN7876) were published by others as atnH and atnJ, respectively, and are
thought to be involved in biosynthesis of 2-aminocaprylic acid, 2-aminododecanoic acid, and
2-aminodecanoic acid, three unusual BCAAs that are components of aspercryptins (46, 47).

Analysis of RNA-seq expression data from wild-type mycelia grown on ammonium, al-
anine, or glutamine (Fig. 6A) showed that batA has the highest expression under all three
conditions. batB was the next most highly expressed and showed increased expression
on alanine and glutamine compared to ammonium. batC, batD, and batE all showed in-
termediate expression levels, whereas batF was not expressed under these conditions.
As batC and batD are involved in biosynthesis of unusual BCAAs (46, 47), we focused on
the other four BAT genes. We measured expression of batA, batB, batE, and batF using
RT-qPCR of RNA prepared from samples grown on ammonium, alanine, or nitrate. batA,
batB, and batE expression did not substantially change under these conditions (Fig. 6B).

FIG 5 Single and combinatorial deletion analysis of BAT genes. (A) Wild-type (MH1), batAD (RT415),
batBD (RT440), batCD (RT475), batDD (RT419), batED (RT417), and batFD (RT441) strains were grown
on supplemented ANM solid media for 2 days with 10 mM nitrate as the predominant nitrogen
source and combinations of 2 mM (each) isoleucine (I), leucine (L), and valine (V) to supplement
potential auxotrophies. –, an omitted amino acid. (B) Wild-type (MH1), batAD batBD (RT457), batAD
batED (RT648), batAD batFD (RT645), batBD batED (RT636), batBD batFD (RT526), batED batFD (RT466),
batAD batBD batED (RT520), batAD batBD batFD (RT523), batAD batED batFD (RT647), batBD batED
batFD (RT531), and batAD batBD batED batFD (RT642) strains grown on supplemented ANM solid
media for 2 days with 10 mM nitrate (NO3) as the predominant nitrogen source and combinations of
2 mM each isoleucine (I), leucine (L), and valine (V) to supplement potential auxotrophies. –, an
omitted amino acid.
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batF was not expressed under these conditions, consistent with it being undetectable by
RNA-seq. We constructed double, triple, and quadruple mutants combining batAD,
batBD, batED, and batFD by meiotic crossing. The batAD batBD double mutant, which
combined deletions of the two most related and highly expressed genes, was a strict
BCAA auxotroph and could only grow if supplemented with all three BCAAs (Fig. 5B).
Therefore, BatA and BatB are the major BAT enzymes for isoleucine, leucine, and valine
(ILV) biosynthesis. The batAD batBD batED and batAD batBD batFD triple mutants and
the batAD batBD batED batFD quadruple mutant showed BCAA auxotrophy identical to
that of the batAD batBD double mutant. In contrast, all of the other double and triple
mutants constructed, which contained a wild-type copy of either batA or batB, were
BCAA prototrophs. We confirmed that introduction of either the batA or batB gene into
the batAD batBD mutant restored BCAA prototrophy (Fig. S4E). We investigated whether

FIG 6 Expression analysis of BAT genes. (A) Mean reads per kilobase per million mapped reads
(RPKM) from RNA-seq of MH1 grown at 37°C for 16 h in supplemented liquid ANM with 10mM
ammonium (NH4), glutamine (Gln), and alanine (Ala). Error bars depict SEM (N= 3). (B) RT-qPCR to
measure expression levels of batA, batB, and batE under anabolic conditions compared with catabolic
conditions. The wild type (MH1) was grown for 16 h in supplemented liquid ANM with 10 mM
ammonium (NH4), nitrate (NO3), or alanine (Ala) (anabolic conditions) or 3.3 mM (each) ILV (catabolic
conditions). Mean fold change (bars) in expression is shown relative to the wild type on 10 mM
ammonium for three independent replicates (circles). ***, P# 0.0001; NS, not significant, using a two-
tailed Student's t test with equal variance. batF was not detected by either RNA-seq or RT-qPCR. (C)
RT-qPCR of batA and batB in the wild-type (MH1), batAD (RT415), or batBD (RT440) strains grown for
16 h in supplemented liquid ANM with 10mM ammonium. Mean fold change in expression (bars)
relative to the wild type for three independent replicates (circles) is shown. *, P# 0.05; NS, not
significant, using a two-tailed Student's t test with equal variance. (D) Wild-type (MH1), batAD
(RT415), batBD (RT440), leuBD (RT453), leuBD batAD (RT793), and leuBD batBD (RT794) strains were
grown on supplemented ANM solid media for 2 days with 10mM ammonium as the predominant
nitrogen source with (ILV) or without (–) 2 mM (each) isoleucine, leucine, and valine or with 2 mM
leucine (L).
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loss of either batA or batB would cause a compensatory increase in expression of batB or
batA, respectively. However, on ammonium, batA expression was not upregulated in the
batBD mutant and batB expression was not upregulated in the batAD mutant (Fig. 6C).
This indicates that the expression levels of either one of the major bat genes for BCAA
biosynthesis is sufficient for prototrophy. We constructed leuBD batAD and leuBD batBD
double mutants. These two double mutants showed leaky leucine auxotrophy similar to
that of the leuBD single mutant, indicating that leuBD is epistatic to batAD and batBD
(Fig. 6D).

In addition to their role in BCAA biosynthesis, BATs also form the first step in ILV ca-
tabolism (28). We examined expression of batA, batB, batE, and batF with ILV as the sole
nitrogen source to determine their expression pattern during catabolic conditions
(Fig. 6B). For both batA and batE, expression levels were similar under anabolic and cata-
bolic conditions. However, batB levels were elevated substantially during ILV catabolism
compared with biosynthetic growth conditions, suggesting that BatB is the predominant
catabolic enzyme. batF expression was undetectable. During BCAA catabolic growth, nei-
ther batA nor batB expression showed compensatory upregulation in the batBD or
batAD strain, respectively (Fig. 7A). We assessed whether mutants carrying single or mul-
tiple BAT gene deletions could utilize each BCAA as the predominant nitrogen source in
the presence of lower levels of the other two BCAAs to supplement the auxotrophy
(Fig. 7B). All six single BAT mutants could utilize the three BCAAs. Mutants lacking batB
but not batA showed slightly reduced colony morphology compared with batB1 strains.
Notably, mutants lacking both batA and batB showed severely reduced growth on
each of the BCAAs as a predominant nitrogen source, and the reduction in growth
was greater on isoleucine and valine than on leucine. We also examined growth of
the batAD and batBD single and double mutants on increasing concentrations of
equimolar ILV and found that batBD shows reduced colony morphology compared
with both wild-type and batAD strains but stronger growth than the batAD batBD
double mutant (Fig. 7C). Therefore, BatA and BatB are the major BAT enzymes in
A. nidulans for both BCAA biosynthesis and utilization. We did not observe a pheno-
type for batED or batFD mutant in BCAA catabolism. Transformation analysis of the
batA or batB gene into the batAD batBD recipient repaired BCAA utilization to the
wild-type phenotype (Fig. S4F).

Regulation of leucine biosynthesis pathway gene expression by LeuB. The tran-
scription factor LeuB is thought to regulate leucine biosynthesis genes because the
leuBD mutant is a leaky leucine auxotroph (19). To determine whether LeuB regulates
these genes in response to leucine levels, we performed RT-qPCR on RNA isolated
from mycelia grown with exogenous leucine, which represses LeuB activation (27), and
in a leuBD strain (Fig. 8). leuB expression was not altered in response to leucine. The six
genes we demonstrated to function in leucine biosynthesis, leuC, luA, leuD, leuE, batA,
and batB, as well as batE, showed decreased expression in response to exogenous leu-
cine and/or in the leuBDmutant compared to the wild type.

DISCUSSION

We have completed annotation of the A. nidulans leucine biosynthesis pathway and
characterized the genes encoding enzymes for the final two steps. Our analysis has
revealed divergence between aspergilli and yeast in the number of genes encoding
the enzymes for each step. In S. cerevisiae, ketoisovalerate is converted to a-IPM by
two a-IPM synthetases, Leu4p and Leu9p, which form homodimers and heterodimers
that show differential sensitivity to leucine feedback inhibition (23–26, 31). In contrast,
a single a-IPM synthetase gene exists in A. nidulans (27). a-IPM is converted to b-IPM
by the isopropylmalate isomerase, which is encoded by a single gene in both S. cerevi-
siae (LEU1) and A. nidulans (luA) (19, 21). b-IPM is then converted to ketoisocaproate by
a single b-IPM dehydrogenase in S. cerevisiae, Leu2p (35, 36), but two enzymes, LeuD
and LeuE, in A. nidulans. The final step in BCAA biosynthesis is catalyzed by BCAA ami-
notransferase (BAT). S. cerevisiae has two BAT genes (38, 39). A. nidulans carries six BAT
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genes; however, primarily two, BatA and BatB, play major roles in ILV biosynthesis.
Interestingly, the genes encoding the dimeric enzymes in the pathway, a-IPM synthe-
tase (31), b-IPM dehydrogenase (48, 49), and BAT (50), differ in copy number, whereas
the nonduplicated gene for a-IPM isomerase is monomeric (51). The LEU4/LEU9 and
BAT1/BAT2 gene duplications resulted from the ancestral whole-genome duplication
(WGD) and exhibit functional diversification associated with the acquisition of ferment-
ative metabolism (52).

The Aspergillus lineage did not experience an ancestral WGD, but alternative mecha-
nisms have mediated gene duplication within the leucine biosynthesis pathway. The acqui-
sition of additional copies of genes often leads to robustness via the evolution of new func-
tions but in some cases confers fragility (52–54). We found that both leuD and leuE function
in leucine biosynthesis, although leuE plays a lesser role based upon its low expression, the
prototrophy of the leuED mutant, and the leaky leucine auxotrophy conferred by deletion
of leuD. This gene duplication provides robustness in the form of redundancy, as perturba-
tion of leucine biosynthesis by deletion of leuD resulted in LeuB-dependent upregulation of
leuE and partial compensation of the leucine auxotrophy. Our functional analysis showed

FIG 7 Combinatorial analysis of BAT genes during catabolic growth. (A) RT-qPCR of batA and batB in
the wild-type (MH1), batAD (RT415), or batBD (RT440) strains grown for 16 h in supplemented liquid
ANM with 3.3 mM (each) isoleucine (I), leucine (L), and valine (V), i.e., catabolic conditions. Mean fold
change in expression (bars) relative to the wild type for three independent replicates (circles) is shown.
NS, not significant using two-tailed Student's t test with equal variance. (B) Wild-type (MH1), batAD
(RT415), batBD (RT440), batCD (RT475), batDD (RT419), batED (RT417), batFD (RT441), batAD batBD
(RT457), batAD batED (RT648), batAD batFD (RT645), batBD batED (RT636), batBD batFD (RT526), batED
batFD (RT466), batAD batBD batED (RT520), batAD batBD batFD (RT523), batAD batED batFD (RT647),
batBD batED batFD (RT531), and batAD batBD batED batFD (RT642) strains were grown on
supplemented ANM solid media for 2 days with 10 mM isoleucine (Ile), leucine (Leu), or valine (Val) as
the predominant nitrogen source and combinations of 2 mM each isoleucine (I), leucine (L), and valine
(V) to supplement auxotrophies. –, an omitted amino acid. (C) Wild-type (MH1), batAD (RT415), batBD
(RT440), and batAD batBD (RT457) strains were grown on supplemented ANM solid media for 2 days at
37°C with increasing equimolar concentrations of isoleucine (I), leucine (L), and valine (V).
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that each of the six A. nidulans BATs are dispensable. Combining BAT gene deletions, how-
ever, revealed that BatA and BatB are the major enzymes in both BCAA biosynthesis and
utilization. BatA contains a mitochondrial targeting signal and shows higher biosynthetic
expression, while the likely cytoplasmic BatB shows higher catabolic expression. Therefore,
BatA and BatB are equivalent to mitochondrial and predominantly biosynthetic Bat1p and
cytoplasmic and predominantly catabolic Bat2p in S. cerevisiae (50, 55, 56). BatA and BatB
show redundancy in both biosynthesis and catabolism. BAT function is also distributed
between two paralogs in Lachancea kluyveri, with one major biosynthetic BAT and both
involved in aerobic metabolism (57). In contrast, Kluyveromyces lactis has just one BAT gene,
which encodes a bifunctional enzyme for BCAA biosynthesis and degradation, and this is
thought to be the ancestral type prior to the WGD and subfunctionalization of Bat1p and
Bat2p in S. cerevisiae (50).

The dispensability of batC, batD, batE, and batF for BCAA biosynthesis and catabo-
lism suggests evolution of novel roles. We showed that batE is regulated by leucine
and LeuB, similar to other leucine biosynthesis genes, but expression levels are low
and we did not observe a phenotype for the batED mutant. However, batE expression
is induced during hypoxia in the absence of glucose-to-ethanol fermentation, in associ-
ation with elevated BCAA biosynthesis that occurs as a mechanism to generate NAD1

and survive anaerobic stress (20, 58). BatE does not appear to contribute to BCAA me-
tabolism under our normoxic growth conditions but may play a role during anaerobic
stress. batC (atnH) and batD (atnJ) are members of the aspercryptin biosynthetic gene
cluster, with presumed roles in transamination of the unusual BCAAs 2-aminocaprylic
acid, 2-aminodecanoic acid, and 2-aminododecanoic acid (46, 47). Aspercryptins con-
tain three BCAAs (isoleucine or valine, 2-aminocaprylic acid, and 2-aminododecanoic
or 2-aminodecanoic acid). Expression of batF was undetectable under our growth con-
ditions or growth conditions used for RNA-seq by others (59). batF is adjacent to the
terriquinone A (tdi) biosynthetic gene cluster and may also be associated with second-
ary metabolism (45, 60–62).

Regulation of leucine biosynthesis is best understood in S. cerevisiae where both
activation and repression are mediated by the Zn(II)2Cys6 transcription factor Leu3p
(16). When leucine is abundant, it interacts with a-IPM synthetase, inhibiting its func-
tion, which decreases cellular a-IPM levels and leads to Leu3p acting as a repressor
(16, 24). When leucine levels decrease, a-IPM synthetase is not inhibited, and a-IPM
interacts with Leu3p, causing a conformational change and resulting in Leu3p switch-
ing to an activator (16, 30). We observed repression by exogenous leucine in wild-type
cells of all six genes that function in leucine biosynthesis, luA, leuC, leuD, leuE, batA,
and batB, as well as batE, indicating this feedback mechanism operates in A. nidulans.
Deletion of the A. nidulans LEU3 ortholog leuB confers leaky leucine auxotrophy (19),
which we have now shown is due to decreased expression of the leucine biosynthesis

FIG 8 LeuB regulation of the leucine biosynthesis genes. RT-qPCR of BCAA biosynthesis genes from
wild-type (MH1) and leuBD (MH12609) strains grown for 16 h in supplemented liquid ANM-10 mM
ammonium with or without 2 mM leucine (Leu). Expression is relative to the wild type. The means
(bars) and individual results from three independent replicates (circles) are shown. *, P# 0.05; **,
P# 0.001; ***, P# 0.0001; NS, not significant, using two-tailed Student's t test with equal variance.
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genes. The leuDD mutant shows leaky leucine auxotrophy and increased expression of
other leucine biosynthesis genes, which likely results from reduced cellular levels of
the negative feedback mediator leucine and increased a-IPM inducer levels due to
increased b-IPM levels increasing the reverse reaction rate carried out by the bidirec-
tional a-IPM isomerase encoded by luA.

The absence of the leucine biosynthesis pathway in animals and the reduced virulence
of leucine auxotrophs (4–6, 9, 33, 97) render leucine biosynthesis enzymes strong candidate
targets for antifungals. Our studies of the genes in this pathway indicate that the feedback
mechanisms and gene duplications present in the aspergilli must be considered in target
selection to avoid increased LeuB-dependent expression of other leucine biosynthesis genes
in response to an antifungal agent targeting this pathway. The strongest target would be
a-IPM synthetase (LeuC), as reduced activity of this enzyme leads to decreased a-IPM and
repression of leucine biosynthesis genes by LeuB (27). The benefit of targeting this step
would be in cross regulation of nitrogen assimilation by reduced expression of gdhA and
potentially reduced cellular glutamate and glutamine levels.

Overall, this study has completed the annotation of the genes required for leucine
biosynthesis in A. nidulans and demonstrated regulation of the pathway genes by
LeuB. We have found roles for leuD and leuE in leucine biosynthesis and for batA and
batB in BCAA biosynthesis and catabolism. Roles for batC (atnH) and batD (atnJ) in
aspercryptins production have now been reported (46, 47), but the roles of batE and
batF remain to be determined.

MATERIALS ANDMETHODS
A. nidulans strains, media, and genetic analysis. A. nidulans strains and genotypes are listed in

Table 3 using conventional nomenclature (98). A. nidulans growth conditions and media were as described pre-
viously (63, 64). Aspergillus nitrogen-free minimal medium (ANM), pH 6.5, containing 1% (wt/vol) glucose as the
sole carbon source, was supplemented for auxotrophies and nitrogen sources (10mM final concentration),
unless otherwise stated. A. nidulans growth testing and genetic analysis were as described previously (64).

Standard molecular techniques. Escherichia coli NM522 cells [F9 proA1B1 lacIq D(lacZ)M15/D(lac-
proAB) glnV thi-1 D(hsdS-mcrB)5] (65) were employed for molecular cloning (66). Plasmid DNA was isolated
using the Wizard Plus SV miniprep DNA purification kit (Promega). A. nidulans genomic DNA was isolated
according to reference 67. PCR products and DNA fragments isolated from agarose gels were cleaned with
the Wizard SV gel and PCR clean-up system (Promega). Restriction enzyme digestions (Promega, New
England Biolabs), dephosphorylation with Arctic shrimp alkaline phosphatase (Promega), and ligations
using T4 DNA ligase (Promega) followed the manufacturers’ instructions. DNA was separated on 1 to 2%
agarose gels by electrophoresis in 1� Tris-acetate-EDTA (TAE) buffer. PCRs used Ex Taq (TaKaRa), Phusion
(Finnzymes), or AccuStart II Geltrack PCR supermix (Quanta Biosciences) DNA polymerases according to
the manufacturers’ instructions, with 1 ng plasmid or 100 ng A. nidulans genomic DNA templates. All reac-
tions followed recommended denaturing and annealing conditions with 33 to 36 amplification cycles.
Oligonucleotide PCR primers (Integrated DNA Technologies) are described in Table S1 in the supplemental
material. DNA sequencing to confirm correct amplifications and cloning was performed at the Kansas
State University DNA Sequencing and Genotyping Facility. Southern hybridizations used either Hybond
N1 or Hybond XL membranes (GE Healthcare) and the DIG (digoxigenin) high prime DNA labeling and
detection starter kit II (Roche) by following the manufacturer’s instructions.

Strain construction. A. nidulans transformation was performed as described previously (27) using the
nkuAD nonhomologous integration-defective mutant for targeted integration (68). Knockout constructs,
generated by the A. nidulans whole-genome gene deletion constructs program (69), were sourced from
the Fungal Genetics Stock Center, Manhattan, KS (70), and were transformed into MH11068 (pyrG89
nkuAD::Bar) and selected for uracil and uridine prototrophy to generate leuDD (AN0912D; RT411, D27 to
11,431bp), leuED (AN2793D; RT413, D26 to 11,233bp), batAD (AN4323; RT415, D165 to 11,722bp),
batBD (AN5957D; RT440, D125 to 11,395 bp), batCD (AN7878D; RT475, D210 to 11,222bp), batDD
(AN7876D; RT419, D27 to 11,297 bp), batED (AN0385D; RT417, D127bp to 1,302 bp), and batFD
(AN8511; RT441, D29 to11,230bp) strains. Selection media for leuDD and leuED transformants were sup-
plemented with 2mM leucine, and BAT gene deletion transformants were supplemented with ILV (2mM
each). The Aspergillus fumigatus pyrG (AfpyrG) marker showed position effect in the batCD mutant, incom-
pletely complementing the pyrimidine auxotrophy of the pyrG89 mutation. Full complementation of
pyrG89 by AfpyrG was observed in the other deletion mutants generated in this study. Pyrimidine supple-
mentation was used in all growth tests. All deletion mutants were confirmed by Southern blotting as a sin-
gle homologous double-crossover integration at the correct locus by probing with the 982-bp KpnI-SspI
fragment of AfpyrG1 (data not shown). Meiotic crossing was used to generate double, triple, and quadru-
ple mutants. The presence of each deletion in the progeny of crosses was confirmed by diagnostic
Southern blotting or diagnostic PCR. The leuDD mutant was repaired by introduction of a wild-type leuD
PCR product (2960 to 13216) amplified from MH1, with direct selection for simultaneous resistance to
1mg ml21 5-fluoroorotic acid (5-FOA) in the absence of exogenous leucine. The leuDD leuED mutant was
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complemented with the plasmid pJS249, which carries leuE (2913 to 12877) PCR amplified from MH1
and cloned into pGEMTeasy by transformation with direct selection for leucine prototrophy. The batAD
batBD double mutant was complemented with the wild-type batA (2717 to 12558) or batB (2725 to
12187) gene using plasmids (pJS244 and pJS255, respectively) containing PCR-amplified DNA from MH1
cloned into pGEMTeasy. Transformants were directly selected for growth in the absence of exogenous ILV.

b-Galactosidase assays. b-Galactosidase assays were performed as described previously (71) using
soluble protein extracts. b-Galactosidase specific activity is defined as A420 � 103min21mg21 of soluble
protein. Protein concentrations were determined using Bio-Rad assay reagent (Bio-Rad).

RNA preparation. Total RNA was isolated by grinding mycelia under liquid nitrogen and subsequent
addition to RNA extraction buffer (7.0 M urea, 100mM Tris-HCl, pH 8.0, 10mM EDTA, 1.0% sodium dodecyl sul-
fate) followed by two phenol-chloroform-isoamyl alcohol extractions and one chloroform extraction (66). RNA
was precipitated in 3 M ammonium acetate and 50% isopropanol, resuspended in diethyl pyrocarbonate-H2O,
and reprecipitated overnight in 4 M lithium chloride at220°C. RNA quality was determined by visualization af-
ter electrophoretic separation in a 1.2% agarose gel containing 1.1% formaldehyde run in 1� morpholinepro-
panesulfonic acid (MOPS) buffer (20mM MOPS, pH 7.0, 5mM sodium acetate, 1mM EDTA). RQ1 DNase
(Promega) treatment of RNA followed the manufacturer’s instructions.

RT-qPCR. For reverse transcriptase-quantitative PCR (RT-qPCR), cDNA was produced using the reverse
transcriptase system (Promega) or qScript cDNA supermix (Quanta Biosciences). RT-qPCR used a MyiQ ther-
mocycler (Bio-Rad) with iTAQ universal SYBR green supermix (Bio-Rad), and results were analyzed with iQ5
v2.1 (Bio-Rad). Fold change was calculated using the DDCT method with b-tubulin-encoding benA as the ref-
erence gene (72–74). Primers (IDT) were designed to specifically amplify cDNA by overlapping a splice junc-
tion. Primer sequences used for RT-qPCR, target regions, and efficiencies are listed in Table S2.

TABLE 3 Strains used in this study

Strain Origin Genotypea

MH1 M. J. Hynes biA1
MH10865 R. B. Todd yA1 pabaA1 pyrG89 argB::fmdS-lacZ areAD(59)::riboB
MH11068 M. J. Hynes pyrG89 pyroA4 nkuAD::Bar
MH12609 M. A. Davis yA1 pabaA1 leuBD::riboB pyroA4 nkuAD::Bar niiA4
MH12181 Downes et al. (27) leuBD::riboB amdS::AfpyroA-gdhA(2753 bp)-lacZ pyroA4 niiA4
RT411 Transformant of MH11068 pyrG89 pyroA4 nkuAD::Bar leuDD::AfpyrG
RT412 RT411�MH10865 yA1 pabaA1 pyrG89 leuDD::AfpyrG
RT413 Transformant of MH11068 pyrG89 pyroA4 nkuAD::Bar leuED::AfpyrG
RT414 RT413�MH10865 yA1 pabaA1 pyrG89 leuED::AfpyrG
RT415 Transformant of MH11068 pyrG89 batAD::AfpyrG pyroA4 nkuAD::Bar
RT416 RT415�MH10865 yA1 pyrG89 pabaA1 batAD::AfpyrG
RT417 Transformant of MH11068 pyrG89 pyroA4 nkuAD::Bar batED::AfpyrG
RT418 RT417�MH10865 yA1 pabaA1 pyrG89 batED::AfpyrG
RT419 Transformant of MH11068 pyrG89 batDD::AfpyrG pyroA4 nkuAD::Bar
RT440 Transformant of MH11068 pyrG89 batBD::AfpyrG pyroA4 nkuAD::Bar
RT441 Transformant of MH11068 pyrG89 pyroA4 nkuAD::Bar batFD::AfpyrG
RT444 RT411� RT414 pyrG89 pyroA4 leuED::AfpyrG leuDD::AfpyrG
RT452 MH12181�MH11068 pyrG89 leuBD::riboB amdS::AfpyroA-gdhA(2753 bp)-lacZ pyroA4
RT453 MH12181�MH11068 pyrG89 leuBD::riboB amdS::AfpyroA-gdhA(2753 bp)-lacZ pyroA4 niiA4
RT454 RT418� RT419 yA1 pabaA1 pyrG89 batDD::AfpyrG batED::AfpyrG
RT457 RT416� RT440 pyrG89 batBD::AfpyrG batAD::AfpyrG pyroA4
RT458 RT412� RT453 yA1 pabaA1 pyrG89 amdS::AfpyroA-gdhA(2753 bp)-lacZ leuDD::AfpyrG
RT460 RT412� RT453 yA1 pabaA1 pyrG89 leuBD::riboB amdS::AfpyroA-gdhA(2753 bp)-lacZ leuDD::AfpyrG
RT462 RT412� RT453 leuBD::riboB amdS::AfpyroA-gdhA(2753 bp)-lacZ leuDD::AfpyrG niiA4
RT466 RT441� RT454 pabaA1 pyrG89 batFD::AfpyrG batED::AfpyrG
RT475 Transformant of MH11068 pyrG89 batCD::AfpyrG pyroA4 nkuAD::Bar
RT520 RT457� RT466 batBD::AfpyrG batAD::AfpyrG batED::AfpyrG
RT523 RT457� RT466 pabaA1 batBD::AfpyrG batAD::AfpyrG batFD::AfpyrG
RT524 RT457� RT466 pabaA1 batBD::AfpyrG batAD::AfpyrG batED::AfpyrG
RT525 RT457� RT466 batBD::AfpyrG pyroA4 batFD::AfpyrG batED::AfpyrG
RT526 RT457� RT466 batBD::AfpyrG batFD::AfpyrG
RT531 RT457� RT466 batBD::AfpyrG batFD::AfpyrG batED::AfpyrG
RT636 RT525� RT524 batBD::AfpyrG batED::AfpyrG
RT642 RT525� RT523 batBD::AfpyrG batAD::AfpyrG pyroA4 batFD::AfpyrG batED::AfpyrG
RT645 RT415� RT466 pabaA1 batAD::AfpyrG pyroA4 batFD::AfpyrG
RT647 RT415� RT466 pabaA1 batAD::AfpyrG batFD::AfpyrG batED::AfpyrG
RT648 RT415� RT466 batAD::AfpyrG pyroA4 batED::AfpyrG
RT793 RT453� RT415 pyrG89 batAD::AfpyrG leuBD::riboB pyroA4 nkuAD::Bar niiA4
RT794 RT453� RT440 pyrG89 batBD::AfpyrG leuBD::riboB pyroA4 nkuAD::Bar niiA4
aAll strains carry veA1.
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RNA-seq. PolyA1 RNA, isolated from three independent biological replicates of wild-type (MH1)
mycelia grown for 16 h in supplemented liquid ANM with 10mM ammonium, glutamine, or alanine, was
fragmented to 180 bp and indexed using the TruSeq stranded total RNA sample preparation kit
(Illumina). Multiplexed libraries were sequenced using 50-bp single-end reads on the Illumina Hi-Seq
2500 system (Kansas University Medical Center Genome Sequencing Facility, Kansas City, KS). RNA-seq
analysis was conducted using Galaxy (www.galaxyproject.org) (75–77). Reads were processed with
FASTQ Groomer (78) and FastQC and aligned to the A. nidulans FGSC_A4 genome (79, 80) using TopHat
(v2.0.6) (81) default settings, with exceptions (minimum intron length, 10; maximum intron length,
4,000; maximum alignments, 40; minimum read length, 20). Strand-specific reads were separated using
SAMtools view (v1.1) (82). Strand-specific transcripts were identified using AspGD annotations
(s10_m03_r15) and Cufflinks (v2.1.1.7) (83, 84) default settings, with exceptions (max intron length,
4,000; bias correction, yes; multiread correction, yes). Identified transcripts from all growth conditions
were combined into a single annotation using Cuffmerge guided by the reference annotation.
Differential expression was determined using CuffDiff (84) and cummeRbund (v2.8.2) (85).

Bioinformatics and in silico analyses. DNA and protein sequences were downloaded from the
Aspergillus Genome Database, AspGD (www.aspgd.org [83]), the Saccharomyces Genome Database, SGD
(www.yeastgenome.org [86]), the Broad Institute genomes database (www.broadinstitute.org), the NCBI
protein database (www.ncbi.nlm.nih.gov/protein/), and the EMBL-EBI Pfam database (http://pfam.xfam
.org [87]). Protein sequence database searches used BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
Protein conserved domains were identified using the NCBI Conserved Domain Database (88). Pairwise
protein sequence comparisons, and percent identity and similarity were calculated using EMBOSS
Needle (EMBL-EBI) with default parameters. Sequences were analyzed in Geneious version 5.3.5, created
by Biomatters (www.geneious.com). Multiple sequence alignments were made using ClustalW2 (89) or
Clustal Omega (90) on the EMBL-EBI server (http://www.ebi.ac.uk/Tools/msa) and shaded using online
BoxShade 3.2 (K. Hofmann and M. D. Baron) at ExPASy (https://embnet.vital-it.ch/software/BOX_form
.html). Predicted subcellular localization of proteins was determined using Predotar 1.03 (https://urgi
.versailles.inra.fr/predotar/ [42]), TargetP v1.1 (http://www.cbs.dtu.dk/services/TargetP/ [40, 41]), and
DeepLoc-1.0 (https://services.healthtech.dtu.dk/service.php?DeepLoc-1.0 [43]). Colinearity of syntenic
regions was illustrated using the GBrowse genome browser of FungiDB with genomes clustered based
on whole-genome phylogenies (91–93, 99).

Phylogenetic analyses. The Pfam database (http://pfam.xfam.org/ [87]) was used to identify ortho-
logs in the isocitrate/isopropylmalate dehydrogenase family (PF00180) and the aminotransferase class IV
family (PF01063). Protein sequences were aligned and phylogenies were constructed using MAFFT (94).
The neighbor-joining method with 100 bootstraps was used to generate consensus unrooted phylogenetic trees
of b-IPM dehydrogenases and BATs. Tree visualization and label editing used Interactive Tree Of Life (iTOL) (95).

Data availability. RNA-seq fastq files and bigwigs have been deposited in NCBI's Gene Expression
Omnibus (96) and are accessible through GEO Series accession number (GSE145035).
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