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A B S T R A C T   

To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient 
supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in 
the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by 
most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human 
pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal 
species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus 
on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of 
transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, 
potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of 
fungal infections is addressed.   

1. Introduction 

Pathogenic fungi have a tremendous impact on humans, animals, 
plants, and ecosystem [1,2]. Plant pathogenic fungi impact global 
economy, e.g., a third of all cultivated food crops is destroyed by plant 
pathogenic fungi annually [1]. The majority of fungal infections in 
humans affect skin or mucosa, which is consequently not life-threa-
tening; however, a considerable portion of these are invasive or chronic 
with high mortality [3]. The latter are often difficult to diagnose and to 
treat as limited antifungal drugs are available and resistance against 
these drugs is emerging. Therefore, still over one million people die due 
to a fungal infection each year, which are more deaths than caused by 
malaria or tuberculosis [4]. 

To cope with this fungal threat in agriculture and clinics, it is of 
importance to understand the mechanisms, which are used by patho-
genic fungi to infect a host. These include evasion of the immune 
system and supply of nutrients, particular of those with limited avail-
ability in the different host niches [5]. 

Iron is an essential trace element, which is usually limited for pa-
thogens during infection and consequently adaptation to iron starvation 

is crucial for virulence [6–9]. On the other hand, excessive iron uptake 
is toxic as free iron causes the production of highly reactive hydroxyl 
radicals via the Haber Weiss/Fenton reaction [10,11]. Indisputably, 
characterization of iron homeostasis and metabolism in fungi is most 
advanced in Saccharomyces cerevisiae [12]. However, this yeast species 
lacks siderophore biosynthesis, which enables high-affinity iron acqui-
sition and iron storage in most filamentous fungal species (see below). 
Moreover, baker's yeast employs rather unique iron regulatory me-
chanisms (see below). 

This review focuses mainly on iron homeostasis maintaining me-
chanisms of Aspergillus fumigatus, as this mold became a model system 
for iron metabolism of siderophore-producing fungal species. 

2. A. fumigatus - pathogen and valuable model organism 

The ascomycete A. fumigatus is a saprobic fungus ubiquitously 
dwelling on dead organic-matter. However, as an opportunistic pa-
thogen it can cause life-threatening invasive diseases such as invasive 
pulmonary aspergillosis, mainly in immunocompromised patients [13]. 
The produced spores, also termed conidia, are plentifully distributed by 
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air and easily inhaled due to their small size (2.0–3.0 μm). The average 
adult inhales roughly more than hundred spores daily [14]. A. fumigatus 
is a thermotolerant fungus, which can grow at temperatures up to 52 °C 
[15], and with a fast growth rate at 37 °C it is perfectly adapted to grow 
inside a warm-blooded host. This and other characteristics discriminate 
A. fumigatus from its less pathogenic relatives [16] and make A. fumi-
gatus a common airborne fungal pathogen. A. fumigatus infections have 
mortality rates between 15% and  >  90% and it is estimated that A. 
fumigatus is responsible for over half a million deaths per year world-
wide [17]. A. fumigatus reproduces asexually and sexually and the 
haploid genomes of several isolates are sequenced [18,19]. It is a fast- 
growing organism, which can easily be cultivated in liquid and on solid 
medium (Fig. 1B). Meanwhile, an extensive toolbox of molecular 
methods has made A. fumigatus accessible to sophisticated molecular 
analyses [20,21]. 

3. Iron - an essential trace element 

The ability of iron to easily accept and release electrons to switch 
between two oxidation states (ferrous iron, Fe2+, and ferric iron, Fe3+) 
has made it a convenient cofactor in redox biochemistry. Numerous 
enzymes require iron or iron-containing cofactors to fulfil their specific 
function. These cofactors include mononuclear or dinuclear non-
haem‑iron centers, iron‑sulfur (Fe-S) clusters, heme, and siroheme 
[22–25]. With few exceptions [26,27], iron is crucial for all forms of life 
as it is involved in vital pathways such as oxidative phosphorylation, 
the TCA cycle, oxidative stress detoxification, P450 enzymes, DNA re-
pair and replication as well as the biosynthesis of amino acids, nu-
cleotides, and sterols. Iron is also crucially involved in less conserved 
pathways such as secondary metabolism, e.g., biosynthesis of β-lactam 
antibiotics, penicillin, and cephalosporin, and several metabolites re-
quiring P450 oxidoreductases [28,29]. 

4. Fungal iron acquisition strategies 

Iron is one of the most abundant elements on earth. However, its 
bioavailability is very low in most biological niches as it is easily oxi-
dized by atmospheric oxygen into hardly soluble ferric complexes with 
the most common form of ferric iron in natural waters being ferric 
hydroxides [30]. Hence, fungi have developed sophisticated mechan-
isms to facilitate iron acquisition, which can be divided into low-affinity 
and high-affinity iron uptake systems. Low-affinity iron uptake, which 
will not be further discussed in this review, includes direct uptake of 
ferrous iron ions, in S. cerevisiae involving the transporters Fet4 and 
Smf1 [31]. A. fumigatus mutants lacking high-affinity iron uptake sys-
tems are able to grow in the presence of high amounts of ferrous iron 
demonstrating the presence of low-affinity uptake [32]. In line, A. fu-
migatus encodes uncharacterized homologs of Fet4 and Smf1. Moreover, 
some fungal species have the ability to use heme as iron source, e.g., 
Candida albicans and Cryptococcus neoformans [33,34]. A. fumigatus 
appears to lack efficient use of heme as iron source [32]. High-affinity 
uptake systems include siderophore-mediated iron acquisition (SIA) 
and reductive iron assimilation (RIA). It is believed that control of iron 
uptake and storage is the major mechanism to maintain iron home-
ostasis in fungi as no excretory mechanism for iron have been identified 
so far. In contrast, certain mammalian cells, enterocytes and macro-
phages [35], and possibly bacteria [36] are able to export iron. The 
strategies for iron uptake and storage of A. fumigatus are summarized in  
Fig. 1 including growth phenotypes of mutants with respective defects 
that are described in detail below. 

4.1. Reductive iron assimilation (RIA) 

As mentioned above, ferric iron forms hardly soluble complexes 
under aerobic conditions. A highly conserved strategy to cope with the 
low bioavailability of iron is extracellular reduction of ferric to ferrous 

Fig. 1. Summary of iron acquisition and storage mechanisms of A. fumigatus. (A) For optimal adaptation to iron starvation, A. fumigatus employs several iron uptake 
systems. High-affinity iron uptake includes RIA (reduction of hardly soluble iron complexes to increase iron solubility) and SIA (siderophore-mediated iron ac-
quisition); SIA involves uptake of endogenous siderophores such as ferric TAFC, which is hydrolyzed by EstB for intracellular iron release after uptake, and xeno-
siderophores such as FOB. Moreover, the antifungal drug VL-2397 is taken up by the siderophore transporter Sit1. For intracellular transport and storage, iron is 
bound to the siderophore ferricrocin. Excess of cellular iron is mainly detoxified by its translocation into the vacuole via CccA. (B) Growth-phenotypes of A. fumigatus 
mutants under different iron-availability. Lack of SIA results in a growth defect during iron starvation (−); lack of both SIA and RIA blocks growth also during iron 
sufficiency (0.03 mM); lack of vacuolar iron detoxification impairs growth under high iron (10 mM) conditions. 
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iron. The reduction of ferric iron decreases ferric‑iron complex forma-
tion and thereby increases the solubility and consequently bioavail-
ability of iron. RIA has been mainly characterized in baker's yeast 
[31,37], but A. fumigatus was also shown to employ this strategy 
[32,38]. In this pathway, plasma membrane-localized metallor-
eductases, in A. fumigatus mainly FreB (Fig. 1A; [38]), reduce ferric to 
ferrous iron which is thereby mobilized. Subsequently, the ferrous iron 
is re-oxidized to ferric iron by a multicopper-oxidoreductase, termed 
FetC in A. fumigatus, to enable its uptake via a ferric‑iron transporter, 
termed FtrA in A. fumigatus. These opposing reduction and oxidation 
steps appear to be counterintuitive at first sight and the reason is ac-
tually not completely understood. The combined action of the ferrox-
idase and the permease might be required to impart specificity to the 
high-affinity iron transport system and/or protect the organism from 
toxic effects of ferrous iron [39,40]. RIA is highly conserved in the 
fungal kingdom. A rare exception is Aspergillus nidulans, which lacks 
homologs of FtrA and FetC (Fig. 1A; [41]). 

4.2. Siderophore-mediated iron assimilation (SIA) 

In addition to RIA many fungal species employ SIA. In this system 
low-molecular mass, iron-chelating molecules, termed siderophores 
(from Greek: “sidero”, iron, and “phorein”, ‘carrier’), are excreted to 
bind ferric iron (detailed mechanisms are described in [42]). Iron- 
bound siderophores are then taken up to supply the fungus with iron. 
The first siderophore, coprogen, was described in 1952 as an essential 
growth factor of coprophilic (strictly dung inhabiting) fungi such as 
Pilobolus spp. [43]. In the same year, the iron-containing compound 
ferrichrome isolated from Ustilago sphaerogena was shown to have si-
milar growth-promoting activity [44]. Later, it was shown that co-
progen and ferrichrome act as iron-transporting agents in microbial 
metabolism. 

4.2.1. Siderophore biosynthesis 
Most fungal siderophores are of the hydroxamate-type, which can 

be grouped into four structural families: fusarinines, coprogens, ferri-
chromes, and rhodotorulic acid; representatives of each family are 
shown in Fig. 2A. Detailed chemistry of siderophores has been reviewed 
previously [45,46]. The iron-chelating hydroxamate groups of these 
siderophores are synthesized from the same building blocks, namely the 
non-proteinogenic amino acid N5-hydroxyornithine and an acyl-CoA 
ester such as acetyl-CoA (e.g., ferricrocin, rhodotorulic acid), hydro-
xymethylglutaryl-CoA (e.g., ferrichrome A), malonyl-CoA (e.g., mal-
onichrome) or anhydromevalonyl-CoA (e.g. fusarinines), via transacy-
lation of ornithine that is beforehand N5-hydroxylated by an enzyme 
termed SidA. The siderophore biosynthetic pathway of A. fumigatus, 
shown in Fig. 2B, is hence largely conserved in most siderophore-pro-
ducing fungi; e.g., Talaromyces marneffei, Fusarium oxysporum, Co-
chliobolus heterostrophus, and Ustilago maydis [47–50]. SIA of A. fumi-
gatus has been extensively reviewed [51]. Hydroxamate groups are 
excellent ligands in coordination chemistry [46]. In siderophores, these 
groups strongly coordinate ferric iron via a bidentate structure [46]. 
Most fungal siderophores have three hydroxamate groups linked by 
ester- or peptide bonds to form hexadentate structures, which en-
ormously increase the affinity for ferric iron. Both peptide and ester 
bond formation is catalyzed by non-ribosomal peptide synthetases 
(NRPSs), which are best known from biosynthetic pathways involved in 
secondary metabolism [52]. Fusarinine- and coprogen-type side-
rophores are examples for products of NRPSs catalyzing the formation 
of ester bonds [51]. 

A. fumigatus produces four siderophores, extracellular fusarinine C 
and its derivative triacetylfusarinine C (TAFC) for iron acquisition as 
well as the ferrichrome-type siderophores ferricrocin and hydro-
xyferricrocin for intracellular iron storage and handling (see below and  
Fig. 2A). Fusarinine- and coprogen-type siderophores are typically ex-
creted, ferrichrome-type siderophores are often found strictly 

intracellularly as in A. fumigatus, but some fungi also secrete them, e.g., 
U. maydis, Aspergillus niger, and A. terreus [53–55]. Siderophores pro-
duced by selected fungal species are summarized in Table 1. The types 
of siderophores produced can vary within the same genus, e.g., Asper-
gillus spp.; on the other hand, A. nidulans and A. fumigatus, which are 
only distantly related, produce the same extracellular and hyphal 
siderophores. 

Most Ascomycota and Basidiomycota species produce hydroxamate- 
type siderophores [56,57]. However, there are famous exceptions of 
economic and/or medical relevance such as the entire Saccharomycotina 
clade, including S. cerevisiae and C. albicans, as well as the basidiomy-
cete genus Cryptococcus spp. Interestingly, the majority of these ex-
ceptions are yeast morphotypes. On the other hand, there are yeast 
species that produce siderophores such as Schizosaccharomyces pombe, 
Rhodotorula spp, and Aureobasidium melanogenum [58–60]. Moreover, 
Mucoromycota lack the ability to produce hydroxmate-type side-
rophores but produce a carboxylate-type siderophore, termed rhizo-
ferrin, originally isolated from Rhizopus microsporus [61,62]. Compared 
to most hydroxamate-type siderophores, rhizoferrin displays a sig-
nificantly lower affinity to iron. Recently, rhizoferrin biosynthesis has 
been shown to depend on an NRPS-independent siderophore (NIS) 
enzyme in Rhizopus delemar [63]. 

Several Saccharomycotina species produce and/or are able to take up 
the iron-chelating compound pulcherrimin, which is composed of two 
cyclized and modified leucine molecules [64]. In contrast to classical 
siderophores, its production is not confined to iron starvation condi-
tions. Pulcherrimin has been shown to mediate antagonistic interac-
tions toward nonproducing yeast species. Consequently, pulcherrimin's 
role appears to be iron monopolizing rather than iron scavenging for 
iron supply. Also A. fumigatus produces an iron chelating hexapeptide, 
hexadehydroastechrome, which lacks classical siderophore activity; its 
artificial overexpression even causes iron starvation via cellular iron 
deprivation [65]. Taken together, not all low molecular-mass iron 
chelating metabolites serve as classical siderophores. 

Notably, most bacteria employ SIA, involving in addition to hy-
droxamate-type siderophores also catecholate-, carboxylate-, and 
mixed-types [46,66]. In contrast, some plants utilize rather simple iron 
chelators including nicotianamine, mugineic acid family phytosider-
ophores, and citrate for iron mobilization [67]. Remarkably, bio-
synthesis of the hydroxamate groups of bacterial siderophores involves 
homologs of the fungal N5-ornithine hydroxylase SidA (Fig. 2B), e.g., for 
biosynthesis of pyoverdine by Pseudomonas spp., aerobactin by Escher-
ichia coli, mycobactin by Mycobacterium spp., or feroxamines produced 
by Streptomycetes and distinct Enterobacteriaceae [68], which underlines 
the overlap of biosynthetic modules used in bacterial and fungal SIA. 

4.2.2. Siderophore uptake and intracellular release of iron 
Uptake of siderophore‑iron chelates in fungi is mediated by mem-

bers of the siderophore iron transporter (SIT) family, which is a sub-
family of the major facilitator superfamily. SIT proteins are exclusively 
found in the fungal kingdom and here in most species [57]. Notably, 
three SIT proteins appear to have siderophore-independent functions; S. 
cerevisiae Gex1 was found to act as a glutathione exchanger [69], S. 
pombe Str3 is required for low-affinity heme uptake [70], and the gene 
encoding A. fumigatus CrmC is localized in a secondary metabolite gene 
cluster and was shown to be regulated by copper and not by iron [71]. 

Despite the fact that there are fungal species lacking siderophore 
biosynthesis, the ability to utilize siderophore-chelated iron appears to 
be highly conserved in the fungal kingdom, i.e. most species from all 
fungal phyla (Ascomycota, Basidiomycota, Mucoromycota, and 
Chytridiomycota) possess SIT proteins [57]. However, there are excep-
tions such as the Chytridiomycota species Batrachochytrium den-
drobatidis. In line, Mucoromycota are able to take up hydroxamate 
siderophores despite the fact that they do not synthesize this side-
rophore type [72,73]. As most fungal species appear to produce side-
rophores, it is likely that the non-siderophore-producing species have 
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Fig. 2. Structures of hydroxamate siderophore representatives and siderophore biosynthetic pathway in A. fumigatus. (A) All shown siderophores share common 
building blocks, N5-hydroxyornithine (in blue) and acyl/acetyl groups (in green), which constitute the hydroxamate-groups (boxed in gray; middle panel). 
Hydroxamate groups are shaded in gray. In fusarinine C, TAFC and coprogen, the acyl group is anhydromevalonyl; in rhodotorulic acid and ferricrocin it is acetyl. 
The acetyl groups lacking in fusarinine C compared to TAFC are shown in black. Siderophore-Fe3+ formation constants (logKf) were taken from references 
[276–278]. (B) The first committed step in the biosynthesis of A. fumigatus siderophores is the N5-hydroxylation of ornithine catalyzed by SidA. Subsequently, the 
pathways for biosynthesis of extra- and intracellular siderophores split. For intracellular siderophores, acetyl is transferred to N5-hydroxyornithine by SidL and an 
unidentified transacetylase. For extracellular siderophores, the transacylase SidF transfers anhydromevalonyl to N5-hydroxyornithine. The required anhy-
dromevalonyl-CoA moiety is derived from mevalonate by CoA-ligation and dehydration catalyzed by the enzymes SidI and SidH, respectively, thereby linking 
isoprenoide and siderophore biosynthetic pathways. Fusarinines and ferrichromes are then assembled by the non-ribosomal peptide synthetases SidD and SidC, 
respectively. TAFC is derived by triple N2-acetylation of fusarinine C catalyzed by SidG. For ferricrocin biosynthesis, two glycine residues and one serine residue are 
incorporated in addition to the three hydroxamate groups. Hydroxyferricrocin is derived from ferricrocin by a single hydroxylation step catalyzed by an unknown 
enzyme. SidI, SidF and SidH are localized in peroxisomes, while the other dedicated siderophore biosynthetic enzymes are believed to operate in the cytosol [279]. 
The targets of statins (HMG-CoA reductase, Hmg1), azoles (Cyp51A), and celastrol (SidA) are indicated. 
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lost the ability to synthesize siderophores due to the lack of selection 
pressure in their niche, while they have preserved the ability to utilize 
siderophores. The ability to utilize xenosiderophores (siderophores of 
non-self origin) can be explained by the fact that siderophore-chelated 
iron is highly valuable due to its solubility. Moreover, the utilization of 
xenosiderophores most likely plays a role in microbial competition and 
can thus be observed also in siderophore-producing fungi (see below). 
Uptake of xenosiderophores via SIT members has been demonstrated for 
example for S. cerevisiae, C. albicans, C. glabrata, C. neoformans, A. fu-
migatus, and A. nidulans [74–80], whereby also bacterial siderophores 
have been shown to be utilized by fungi including the hydroxamate 
siderophore feroxamine B and the catecholate siderophore en-
terobactin. A. fumigatus possesses five potential siderophore transpor-
ters, which are induced by iron starvation [81]. MirB transports the 
endogenous siderophore TAFC [82], Sit1 and Sit2 transport ferri-
chrome, whereby Sit1 transports additionally feroxamine B (Fig. 1A; 

[75]). The substrate specificity of MirC and MirD remains elusive 
whereby a function of MirC in ferricrocin biosynthesis was suggested 
[83]. 

The high affinity of siderophores to iron requires mechanisms to 
release the chelated iron from siderophores to make it available for 
metabolic processes after uptake. In Aspergillus spp., three esterases 
have been identified, which intracellularly hydrolyze siderophores with 
strict substrate specificity: A. fumigatus EstB for TAFC (Fig. 1A), A. fu-
migatus SidJ for fusarinine C, and A. nidulans EstA for enterobactin 
[84–86]. Recently the X-ray crystal structures of all three enzymes have 
been resolved providing new insights on the mode of action and sub-
strate specificity [86]. Noteworthy, EstA and EstB are homologs of 
bacterial esterases hydrolyzing enterobactin and salmochelines [87], 
which again underlines the overlap of modules used in bacterial and 
fungal SIA. 

Table 1 
Siderophores of selected species. Ferrichrome-type, coprogen-type, and fusarinine-type siderophores are shown in blue, green, and red, respectively; “?” marks 
species in which the conidial siderophore has not been analyzed; species that do not produce conidia or hydroxamate siderophores are marked by “na” (not 
applicable); * Epichloënin A is an atypical ferrichrome-type siderophore but with a cyclic structure consisting of eight amino acid residues. Detailed siderophore 
structures have been excellently reviewed by Hider and Kong [46]. Some references are exclusively found in this Table [261,262,264–267]. 

Species Extracellular
siderophore

Hyphal/yeast
siderophore

Conidial
siderophore Reference

Ascomycota
Schizosaccharomyces pombe Ferrichrome Ferrichrome na [59]
Saccharomyces cerevisiae - - na [57]
Candida glabrata - - na [57]
Candida albicans - - na [57]

Aspergillus fumigatus Fusarinine C
TAFC Ferricrocin Hydroxyferricrocin [100]

Aspergillus nidulans Fusarinine C
TAFC Ferricrocin Ferricrocin [261]

Aspergillus niger Coprogen B
Ferrichrome Ferrichrome ? [54]

Aspergillus terreus Coprogen
Ferrichrysin Ferrichrysin ? [55]

Penicillium chrysogenum Coprogen Ferrichrome Ferrichrome [261]

Neurospora crassa Coprogen Ferricrocin
Ferrichrome C Ferricrocin [262]

Fusarium oxysporum Fusarinine C
Malonychrome

Ferricrocin
Ferrichrome C 
Malonichrome

? [49]

Fusarium graminearum TAFC
Malonichrome Ferricrocin ? [228,263]

Cochliobolus heterostrophus
Coprogen

Neocoprogen I
Neocoprogen II

Ferricrocin ? [103,228]

Alternaria brassicicola Dimethylcoprogen [228]

Acremonium chrysogenum
Coprogen B,

Methylcoprogen B, 
Dimethylcoprogen

Ferricrocin ? [264]

Magnaporthe grisea
Coprogen, coprogen B

Methylcoprogen
Methylcoprogen B

Ferricrocin ? [265]

Colletotrichum graminicola
Coprogen

Coprogen B
Methylcoprogen B

Ferricrocin ? [230]

Aureobasidium melanogenum Fusarinine C Ferricrocin
Hydroxyferricrocin ? [58]

Metarhizium robertsii Metachelins Ferricrocin ? [266]

Epichloë festucae Epichloënin A* Epichloënin A*
Ferricrocin ? [243,267]

Basidiomycota
Cryptococcus neoformans - - na [57]
Microbotryum violaceum Rhodotorulic acid Rhodotorulic acid na [235]

Rhodutorula glutinins Rhodotorulic acid Rhodotorulic acid na [60]

Ustilago maydis Ferrichrome
Ferrichrome A

Ferrichrome
Ferrichrome A na [53]

Mucoromycota
Rhizopus delemar Rhizzoferrin rhizzoferrin na [63]
Mucor mucedo Rhizzoferrin rhizzoferrin na [61]
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5. Iron storage and detoxification 

Two different mechanisms for iron storage have been described in 
fungi, namely vacuolar and siderophore-mediated iron storage. 
Moreover, ferritin-like iron-containing proteins have been detected in 
Mucoromycota [88]. 

5.1. Vacuolar iron storage and detoxification 

The role of the vacuole in iron homeostasis has been extensively 
investigated in S. cerevisiae. In this yeast, iron is imported into the va-
cuole by the transporter Ccc1 for iron storage, reuse, and detoxification 
as ferric polyphosphate [89]. Reuse of vacuolar-stored iron is mediated 
by paralogs of RIA components localized in the vacuolar membrane, 
i.e., by the metalloreductase Fre6 and a complex consisting of the fer-
roxidase Fet5 and the iron permease Fth1 [90,91]. Moreover, the 
NRAMP transporter Smf3 appears to play a role in vacuolar iron export 
in S. cerevisiae [92]. As shown in S. cerevisiae and C. albicans, vacuolar 
iron management is linked to mitochondrial iron metabolism [93,94]. 
Similar to S. cerevisiae, inactivation of the Ccc1 homolog CccA highly 
decreases resistance to iron toxicity in A. fumigatus demonstrating the 
conservation of vacuolar iron detoxification via the Ccc1 homolog CccA 
(Fig. 1; [95]). However, it is not clear if vacuolar stored iron can be 
reused in A. fumigatus. In S. pombe, the Ccc1 homolog Pcl1 mediates 
vacuolar iron import and the ABC transporter Abc3 is involved in reuse 
of vacuolar stored iron [96,97]. 

5.2. Siderophore-mediated iron storage 

Siderophore-producing fungi use siderophores also for intracellular 
iron handling. The rationale for this strategy might be that siderophore- 
bound iron does not participate in Fenton chemistry. Intracellular 
siderophores might lower the labile iron pool to prevent formation of 
deleterious hydroxyl radicals [98,99]. 

A. fumigatus employs the ferrichrome-type siderophore ferricrocin 
for hyphal- and its hydroxylated version hydroxyferricrocin for conidial 
iron handling [100]. Conidial siderophore-mediated iron storage was 
shown to be important for germination of conidia in A. fumigatus, A. 
nidulans, Neurospora crassa, and Penicillium chrysogenum [57,101]. 
Moreover, several lines of evidence indicate that siderophores are also 
involved in iron trafficking within hyphae, i.e., (i) in A. fumigatus, A. 
nidulans, C. heterostrophus, and Giberella zeae lack of ferricrocin reduces 
sporulation and/or blocks sexual development, both of which depend 
on transport of nutrients from substrate to aerial hyphae [98,102,103], 
(ii) conidia produced by ferricrocin lacking mutants display an iron 
starvation signature at transcriptional and protein levels under iron 
replete conditions [102], (iii) lack of ferricrocin increases the hyphal 
iron content about 2-fold in A. fumigatus [100], and (iv) lack of ferri-
crocin decreases the growth rate during iron starvation in A. fumigatus 
and A. nidulans [98,100]. 

6. Fungal iron regulatory systems to maintain iron homeostasis 

As described above, different fungal species evolved diverse, par-
tially overlapping, mechanisms for iron acquisition and storage. To 
avoid both iron shortage and toxicity, these mechanisms require fine- 
tuned regulation based on cellular iron-sensing. The common conserved 
outcome of iron regulation in all species is upregulation of high-affinity 
iron acquisition and downregulation of iron consumption to spare iron 
during iron starvation as well induction of iron detoxification during 
iron excess. Dependent on the species, tightly regulated high-affinity 
iron acquisition systems include SIA, RIA and/or heme acquisition. 
Regulated iron-consuming pathways include respiration, TCA cycle, 
biosynthesis of heme, amino acids, and sterols. The major iron detox-
ifying mechanism conserved in most species is vacuolar iron deposition. 
Notably, different fungal species evolved diverse iron-regulatory 

mechanisms. Examples of fungal iron-regulatory factors are summar-
ized in Table 2. Remarkably, the model eukaryote S. cerevisiae displays 
a rather unique system as one of its iron-sensing transcription factors, 
Aft1/2, apart from Saccharomycetes, is not widespread. In contrast, the 
regulators employed by A. fumigatus, SreA and HapX, are largely con-
served in the fungal kingdom. The differences are probably best un-
derstood in the context of phylogeny and evolutionary events as dis-
cussed below (Fig. 3). HapX homologs are found in Ascomycota and 
Basidiomycota. SreA appears to be the iron-regulatory protein with the 
highest phylogenetic conservation as it is found in Ascomycota, Basi-
diomycota, and Mucoromycota. Despite the species-specific differences, 
certain iron-regulatory/sensing modules within transcription factors 
are highly conserved in all fungal species analyzed so far. Evolutionary 
conservation of the DNA-binding and iron-sensing domains of SreA 
homologs is displayed in Fig. 4; domain architecture of HapX homologs 
is illustrated in Fig. 5A and evolutionary conservation of the DNA- 
binding domain of HapX homologs is shown in Fig. 5B. Species-specific 
details are discussed below. 

6.1. Iron regulation in A. fumigatus 

6.1.1. Iron regulation via iron-sensing transcription factors 
A. fumigatus employs two iron-sensing transcription factors, termed 

SreA and HapX [51]. SreA harbors two Cys2Cys2 GATA-type zinc fin-
gers, which recognize the consensus DNA sequence ATCWGATAA, se-
parated by a cysteine-rich region (CRR), which mediates iron sensing 
(Fig. 4). HapX comprises several phylogenetically conserved domains 
(Fig. 5): (i) a bZIP-type DNA-binding domain, (ii) a Hap4-like domain 
(Hap4L) for physical interaction with the CCAAT-binding complex 
(CBC, termed Hap complex in S. cerevisiae; see below), and (iii) four 
CRR, whereby two CRR (CRR-A and CRR-B) have been shown to be 
involved in iron sensing, most likely via [2Fe-2S] cluster binding similar 
to SreA, while the other two (CRR-C and CRR-D) lack assigned func-
tions. 

During iron sufficiency, SreA represses high-affinity iron uptake, 
including RIA and SIA, to avoid iron toxicity. During iron starvation, 
HapX represses iron-consuming pathways such as respiration, heme 
biosynthesis, TCA cycle, and vacuolar iron deposition to spare iron. 
Furthermore, HapX transcriptionally activates SIA but also iron-in-
dependent functions such as ribotoxin AspF1 [104]. Remarkably, iron 
excess converts HapX into an activator of iron-dependent pathways, 
particularly vacuolar iron deposition, which appears to be the major 
mechanism of iron detoxification [105]. The functions of HapX during 
iron starvation and iron excess can be confined to specific protein do-
mains, i.e., mutation of the CRR-B impairs adaptation of A. fumigatus to 
iron excess but not iron starvation; inversely, truncation of the C-ter-
minus impairs adaptation to iron starvation but not iron excess. HapX 
executes all functions via physical interaction with the CBC [106]. The 
CBC has HapX-independent functions and is speculated to affect ex-
pression of about 30% of all genes; i.e, the CBC-HapX regulon is a subset 
of the CBC regulon. Taken together, both SreA and HapX are important 
for adaptation to iron sufficiency, while only HapX is also crucial for 
adaptation to iron starvation. Inactivation of both HapX and SreA is 
synthetically lethal, underlining the critical role of iron homeostasis in 
cellular survival [104,107]. 

Most fungal species possess homologs to SreA and HapX. 
Saccharomycotina, Taphrinomycotina, Basidiomycota, and Mucoromycota 
are discussed below. Apart from these, SreA-like functions have been 
confirmed for homologs of the ascomycete species A. nidulans, A. ter-
reus, A. niger, N. crassa, Histoplasma capsulatum, C. heterostrophus, A. 
melanogenum, Alternaria alternata, Epichloë festucae, Fusarium fujikuroi, 
and Blastomyces dermatitidis [54,55,108–116]; HapX-like functions have 
been confirmed for homologs of A. nidulans, A. terreus, Fusarium gra-
minearum, F. oxysporum, Verticillium dahliae, and B. dermatitidis 
[49,55,107,114,117]. The mechanism of iron sensing by fungal tran-
scription factors is discussed below. 
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6.1.2. Iron homeostasis is tightly interwoven with other metabolic pathways 
Due to the central metabolic role of iron, it is not surprising that a 

variety of regulatory circuits affect cellular iron handling. Most ob-
vious, balance of iron, oxygen, and redox is intimately linked. On the 
one hand, oxidation of iron is the reason for the low iron availability. 
On the other hand, most redox reactions are catalyzed by proteins 
taking advantage of the electron carrying function of iron, often with 
oxygen as the final electron acceptor such as in oxidative phosphor-
ylation. As byproduct of these reactions iron can generate reactive 
oxygen species (ROS) leading to oxidative stress. However, iron is re-
quired to detoxify ROS as catalases and other peroxidases often contain 
heme‑iron as a cofactor. Moreover, upregulation of iron dependent 
pathways requires coordinated iron acquisition and siderophore bio-
synthesis requires coordinated precursor supply. Noteworthy, RIA and 
SIA are both oxygen-dependent pathways due to oxygen consumption 
of the reactions mediated by SidA and FtrA. 

Regarding redox balance, it is fascinating that the CBC, the essential 
interaction partner of iron-sensing HapX, was found to sense ROS 
through oxidative modification of cysteine residues in order to mediate 
oxidative stress response [118], i.e., the CBC:HapX complex combines 
regulation of iron and redox balance. Recently, oxidative stress was 

found to be more deleterious during iron starvation and to overrule 
CBC:HapX complex-mediated repression during iron starvation [119]. 

Adaptation to oxygen limitation represents another link between 
oxygen and iron homeostasis. Hypoxic adaptation requires upregula-
tion of glycolysis, the TCA-cycle, respiration, and ergosterol biosynth-
esis, and as a consequence increased cellular iron and heme contents, 
which is coordinated by the transcription factor SrbA, a member of the 
sterol regulatory element binding protein (SREBP) family [120,121]. 
SrbA is proteolytically activated upon depletion of the cellular sterol 
pool, which appears to serve as “oxygen sensor” because ergosterol 
biosynthesis is highly oxygen consuming [122]. However, ergosterol 
biosynthesis is also highly dependent on iron-dependent enzymes (e.g., 
P450 enzymes such as Cyp51A). SrbA was found to be crucial not only 
for sterol-feedback regulation and consequently resistance against 
triazole drugs and hypoxic growth, but also for activation of high-af-
finity iron acquisition including RIA and SIA [123]. This indicates that 
SrbA coordinates cellular oxygen and iron handling. Inversely, the iron- 
sensing CBC:HapX complex was recently identified as transcriptional 
repressor of the iron-dependent ergosterol biosynthetic enzyme Cyp51A 
and the cytochrome b5 CybE, which is required to fuel P450 enzymes 
including Cyp51A with electrons (Fig. 6A; [29,124]). Via this link, the 

Table 2 
Examples of conserved fungal regulators securing iron homeostasis. Proteins shaded in the same color are 
homologs or share at least conserved domains. 

Species Repression of 
iron acquisition 

during iron 
starvation

Repression of 
iron-consuming 

processes during 
iron starvation

Activation of iron 
acquisition during 

iron starvation

Activation of iron 
detoxification 

during iron 
excess

S. cerevisiae Cth1/21 Aft1/2 Yap5

C. glabrata Cth21 Aft1 Yap5

S. pombe Fep1 Php4

C. albicans Sfu1 Hap43

C. neoformans Cir12 HapX

A. fumigatus SreA HapX

1, In contrast to the other regulators, Cth1/2 do not act transcriptionally but posttranscriptionally. 
2, Cir1 has also activating functions, e.g., for siderophore uptake and virulence determinants.  

Fig. 3. Phylogeny of selected fungal species including their key iron regulators. The phylogenetic tree is schematically drawn according to Gabaldón et al. [147]. (+) 
marks regulators based solely on protein similarity (E-value < e-50). +* marks homologous regulators with functional differences in comparison to A. fumigatus 
HapX or SreA. 
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CBC:HapX complex also modulates azole resistance. Moreover, the 
dominating class of pan-azole resistance, characterized by the occur-
rence of a tandem repeat of at least 34 bases within the promoter of the 
Cyp51A encoding gene, is linked to iron because the repeat increases 
transcriptional activation by SrbA and decreases transcriptional re-
pression by the CBC:HapX complex [124]. Increased azole resistance 
caused by a mutation in one of the subunits of the CBC, HapEP88L, 
underlines CBC:HapX-mediated regulation of Cyp51A [125]. Notably, 
there is not only a SrbA-mediated regulatory link between sterol/iso-
prenoid metabolism and SIA but also a direct enzymatic link because 

the sterol/isoprenoid biosynthetic intermediate mevalonic acid is a 
precursor of extracellular siderophore biosynthesis (Fig. 2B; [51]). The 
SREBP family is conserved in most eukaryotes but S. cerevisiae lacks 
SREBP-mediated adaptation to oxygen limitation, which underlines 
fundamental regulatory rewiring in this yeast as also shown for iron 
regulation as discussed below. 

Another example for the integration of an iron-dependent metabolic 
pathway into the regulation of iron acquisition is biosynthesis of the 
branched-chain amino acids isoleucine, leucine, and valine [126,127]. 
This biosynthetic pathway comprises the two Fe-S-dependent enzymes 

Fig. 4. Evolutionary conservation of the DNA-binding and iron-sensing domains of SreA homologs. (A) Domain architecture of GATA-type iron regulators from A. 
fumigatus (Afu), P. pastoris (Pp), C. albicans (Ca), S. pombe (Sp), U. maydis (Um), C. neoformans (Cn), R. delemar (Rd), and M. circinelloides (Mc). (B) Amino acid 
sequence alignment of the Cys2Cys2 GATA-type zinc finger (ZnF) and cysteine-rich regions (CRR) of fungal SreA orthologs. Residues that match the consensus 
sequence are colored according to their physico-chemical properties. Alignments were generated using MegAlign Pro 17 (DNASTAR, Inc.). 
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dihydroxyacid dehydratase (Ilv3A) and α-IPM isomerase (LeuA) pro-
viding the rationale for downregulation of the encoding genes during 
iron starvation by the CBC:HapX complex [104]. Leucine shortage is 
sensed by the Zn2Cys6-type transcription factor LeuB, which is post-
translationally activated by accumulation of the leucine pathway in-
termediate α-IPM [127,128]. Recently, LeuB was shown to serve not 
only as transcriptional activator of leucine biosynthesis but also of 
HapX and several genes involved in high affinity iron acquisition; i.e., it 
cross-regulates leucine biosynthesis and iron acquisition [126]. In 
agreement with α-IPM as posttranslational activator of LeuB for this 
process, inactivation of LeuC, which blocks α-IPM synthesis, but not 
inactivation of LeuA, which causes accumulation of α-IPM, was shown 
to block adaptation to iron starvation [127]. A scheme of these reg-
ulatory links is shown in Fig. 6B. 

Iron-starvation induces siderophore production and the amount of 
produced siderophores can reach up to 10% of the fungal biomass [51]. 
This accomplishment is achieved by coordinated upregulation of the 
siderophore biosynthetic pathway and precursor supply. A major pre-
cursor of siderophores is the non-proteinogenic amino acid ornithine, 
which can be produced within the mitochondria, as intermediate of 

arginine biosynthesis, or within the cytosol via arginase-mediated hy-
drolysis of arginine [129]; during iron starvation, both pathways are 
upregulated [51]. With glutamine as nitrogen source, ornithine is 
produced mainly via the mitochondrial pathway followed by export 
into the cytosol, where siderophore biosynthesis starts. In contrast, with 
arginine as nitrogen source, ornithine is produced mainly in the cytosol 
from arginine [129,130]. The first enzyme involved in siderophore 
biosynthesis, the ornithine monooxygenase SidA, has been demon-
strated to be activated allosterically by arginine [131]. This regulation 
prevents excessive depletion of the cellular arginine pool, which is es-
sential also for other purposes such as protein biosynthesis, for the sake 
of siderophore biosynthesis. 

Moreover, the gluconeogenesis activating transcription factors AcuK 
and AcuM [132,133], nitrogen metabolite repression-mediating tran-
scription factor AreA [134], unfolded protein response-mediating pro-
teins IreA and HacA [135], pH response regulator PacC [136], cross- 
pathway control regulator CpcA [137], protease activating factor PrtT 
[138], and the mitogen-activated protein kinase (MAPK) MpkA [139], 
which is involved in maintaining cell wall integrity and protection 
against ROS, have been implicated in the regulation of iron uptake. 

Fig. 5. Domain architecture of fungal Hap4-type and HapX/Yap5-type iron regulators that require the CBC as DNA-binding scaffold for their function. (A) The Hap4 
activators of respiratory gene expression in S. cerevisiae (Sc) and C. glabrata (Cg) contain the canonical 16 aa Hap4-like CBC-BD, but lack a bZIP domain. The same 
applies to Php4 in S. pombe (Sp). A. fumigatus (Afu) HapX and its homologs in P. pastoris (Pp), C. neoformans (Cn), and Hap43 in C. albicans (Ca) as well Yap1 in U. 
maydis, Yap5 in Lachancea thermotolerans (Lt), and K. lactis (Kl) are bZIP transcription factors that share the full 16 aa Hap4-like CBC-BD. In contrast, Yap5 bZIP-type 
proteins in C. glabrata and S. cerevisiae contain a degenerated Hap4-like domain. Full and rudimentary Hap4-like domains required for CBC-binding are shown in 
blue. Basic regions, coiled coil domains, and cysteine-rich regions are depicted in red, green and yellow, respectively. (B) Amino acid sequence alignment of the 
Hap4-like CBC-BD and basic region DNA-BD spanning regions in the N-Termini of regulatory CBC subunits shown in (A). Residues that match the consensus sequence 
are colored according to their physico-chemical properties. Alignments were generated using MegAlign Pro 17 (DNASTAR, Inc.). 
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Fig. 6. Iron-regulatory links of selected 
metabolic pathways. (A) The target of 
azoles, heme-dependent ergosterol biosyn-
thetic Cyp51A, and the cytochrome b5 

CybE, which fuels Cyp51A with electrons, 
are both transcriptionally repressed by the 
CBC:HapX complex during iron starvation. 
Transcriptional activation of Cyp51A and 
iron acquisition is mediated by SrbA, which 
is activated by erosterol depletion caused 
for example by iron starvation due to iron 
dependence of ergosterol biosynthesis. With 
respect to SrbA-mediated regulation of iron 
acquisition, ergosterol depletion might 
serve as an indirect signal for iron starva-
tion. (B) Iron availability is indirectly 
sensed via the iron-dependent activity of 
leucine biosynthesis. LeuB transcriptionally 
activates leucine biosynthesis and iron ac-
quisition directly and indirectly via HapX. 
LeuB is activated by α-IPM, which accu-
mulates during iron starvation due to the 
Fe-S dependency of Ilv3A and LeuA. In a 
feedback loop, Ilv3A and LeuA are tran-
scriptionally repressed by the CBC:HapX 
complex during iron starvation. (C) MetR is 
a transcriptional activator of sulfate assim-
ilation, which is required for biosynthesis of 
sulfur containing amino acids, Fe-S and 
GSH. Consequently, MetR is required for 
iron sensing by SreA and HapX. 
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6.2. Iron regulation in C. albicans and Pichia pastoris 

CTG clade species including P. pastoris and C. albicans employ SreA 
and HapX homologs. (Fig. 3). In C. albicans, these are called Sfu1 and 
Hap43, respectively. Sfu1 functions similarly to A. fumigatus SreA 
[140]. Despite high sequence similarity of Hap43 and A. fumigatus 
HapX, Hap43 is dispensable for growth in high iron conditions, i.e., for 
iron detoxification [141]. In other words, only its function during iron 
starvation is conserved in comparison to A. fumigatus. The regulatory 
feedback between Sfu1 and Hap43 includes a third regulator, Sef1, 
which is subject to posttranslational regulation via phosphorylation 
[142,143]. Sef1, is activated during iron starvation, and in turn, tran-
scriptionally activates iron acquisition and Hap43. Sfu1 and Hap43 
possess domains for sensing of [2Fe-2S] availability and consequently 
the cellular iron status (Fig. 5). What might be the rationale for in-
tegration of a third transcription factor? In this respect it is interesting 
to note that Sef1 displays considerable sequence similarity with S. 
cerevisiae Leu3, A. nidulans LeuB, and A. fumigatus LeuB, which all ac-
tivate leucine biosynthesis in response to shortage of leucine, which is 
an iron-dependent metabolite [126,144]. A. fumigatus LeuB has been 
shown to transcriptionally activate HapX and several components of 
high-affinity iron acquisition (see above). Consequently, it is tempting 
to speculate that Sef1 senses iron starvation via shortage in iron-de-
pendent leucine pathway intermediates similar to LeuB/Leu3 tran-
scription factors. In P. pastoris, only the SreA homolog was functionally 
characterized and shown to function similar to A. fumigatus SreA [145]. 
Regulation of iron detoxification is not clarified in these species but lack 
of Sef1 was found to increase susceptibility to iron toxicity in C. albicans 
[141]. 

6.3. Iron regulation in S. cerevisiae and C. glabrata 

As shown in Fig. 3, Saccharomycetales split into the CTG clade (in-
cluding C. albicans and Pichia spp), which exhibits non-canonical codon 
usage [146], and Saccharomycetaceae [147]. The latter can be divided 
into two clades, one of which conducted a whole genome duplication 
(WGD) followed by gene loss (Post-WGD, including S. cerevisiae and C. 
glabrata) and the other without this genome re-arrangement (Pre-WGD 
species including Kluyveromyces lactis and Ashbya gossypii). As discussed 
above, the CTG clade species employ homologs of A. fumigatus SreA and 
HapX. In contrast, the Saccharomycetaceae lost SreA, conserved only the 
iron detoxification function of HapX leading to Yap5 proteins, and 
evolved novel iron regulators, Aft1/2 and Cth1/2. As Pre-WGD and 
Post-WGD species employ largely the same iron regulators (Fig. 3), this 
transcriptional rewiring most likely occurred before the WGD. Conse-
quently, S. cerevisiae, represents a rather unique system for iron reg-
ulation despite the fact that it is the fungal system that has been 
characterized in most detail. In response to iron starvation, the two 
paralogous transcription factors Aft1 and Aft2 activate high-affinity 
iron acquisition, RIA and siderophore uptake, as well as the two para-
logous proteins Cth1 and Cth2 [148]. Cth1/2 initiate degradation of 
mRNAs encoding iron consuming pathways and iron detoxification 
(e.g., Ccc1) by binding to AU-rich elements in their 3′-UTRs [149]. 
Moreover, Cth2 also represses the translation of these genes [150]. 
Taken together, Cth1/2 repress iron use posttranscriptionally, a func-
tion that is carried out transcriptionally by species employing HapX. 
Iron detoxification via vacuolar iron deposition by Ccc1 is activated by 
Yap5, which shares several domains with A. fumigatus HapX (Fig. 5), 
but apparently lacks any function during iron starvation [148]. No-
tably, neofunctionalization of the duplicated version of Yap5 upon 
WGD led to Yap7 proteins, which act as repressors of nitric oxide de-
toxification [151]. 

C. glabrata uses a similar system as S. cerevisiae but employs only a 
single homolog of Aft1/2 and Cth1/2 [152,153]. Moreover, it includes 
a third regulator, Sef1, which is transcriptionally repressed by Cth2 and 
which activates TCA cycle enzymes and ISC assembly factors during 

iron starvation [153]. 
Interestingly, both C. albicans and P. pastoris possess a protein that 

contains a zinc finger DNA-binding domain that is homologous to that 
of S. cerevisiae Aft1/2 but lack the typical Aft1/2 iron-responsive motif 
(Cys-Asp-Cys); in these organisms lack of this transcription factor has 
only a very minor or no impact on iron metabolism [154,155]. Possibly, 
this protein was the ancestor of Aft1/2-mediated iron regulation in 
Saccharomycetaceae. 

6.4. Iron regulation in S. pombe 

For iron regulation S. pombe that belongs to the Taphrinomycotina, 
which split early from the other Ascomycota clades (Fig. 3), employs a 
classical SreA homolog, termed Fep1 (Fig. 4), and a protein termed 
Php4 [156]. Php4 only shares the Hap4-like domain with HapX 
homologs (Fig. 5), which is essential for interaction with the CBC. Si-
milar to HapX homologs, in concert with the CBC, Php4 tran-
scriptionally represses iron-consuming pathways, vacuolar iron detox-
ification, and Fep1. In contrast to HapX homologs, Php4 is not involved 
in activation of iron detoxification, i.e., it lacks a function during iron 
excess similar to C. albicans Hap43. 

6.5. Iron regulation in basidiomycota: U. maydis and C. neoformans 

The prototype of iron regulatory GATA factors homologous to SreA 
was identified in U. maydis, termed Urbs1 (Fig. 4; [157]). Moreover, U. 
maydis possesses a protein showing significant similarity with HapX/ 
Yap5 proteins, termed UmYap1, which was found to regulate the oxi-
dative stress response in this plant pathogen. Interestingly, UmYap1 
and HapX/Hap43/Php4 proteins share the full Hap4-like domain and 
two cysteine-rich regions, CRR-B and CRR-C (Fig. 5). Mutation of cy-
steine residues within the CRR-B abolished the function of UmYap1 
during oxidative stress response. The presence of the CGFC motif con-
taining CRR-B indicates that UmYap1 recognizes [2Fe-2S] clusters and 
might function also in iron regulation as putative HapX/Yap5 homolog. 

C. neoformans employs a SreA homolog displaying structural dif-
ferences compared to other SreA homologs by lacking the N-terminal 
GATA-type zinc finger. Similar to the other SreA homologs, Cir1 re-
presses RIA [158]. However, in contrast to SreA homologs, it functions 
not only as repressor but also as activator for several virulence de-
terminants (e.g., for capsule formation) and uptake of siderophore- 
chelated iron, which is usually co-regulated with RIA. C. neoformans 
also possesses a classical HapX homolog, which represses Cir1 and iron 
consuming pathways but activates uptake of siderophore-chelated iron 
[159]. 

6.6. Iron regulation in Mucoromycota 

Iron regulation has not been investigated in detail in Mucoromycota 
so far. However, it is interesting to note that Mucoromycota, including 
Mucor circinelloides (EPB84775.1) and R. delemar (EIE82954.1) encode 
proteins containing two GATA-type zinc fingers and an intervening 
CRR, which is typical for SreA homologs (Fig. 4). These data underline 
the wide conservation of SreA homologous regulators. In contrast, these 
species seem to lack typical HapX/Yap5 homologs. 

7. Iron‑sulfur (Fe-S) cluster biosynthesis and iron sensing 

Fe-S clusters are essential cofactors in numerous proteins. Moreover, 
eukaryotes have been shown to sense iron mainly via intracellular Fe-S 
cluster availability rather than iron availability per se. Iron‑sulfur 
cluster biogenesis has been extensively reviewed [22] and is also cov-
ered in detail by other articles in this issue. However, since Fe-S cluster 
biogenesis is inextricably connected to regulation of iron homeostasis, a 
brief overview about this pathway is provided here. 

Although the composition of Fe-S clusters is usually rather 

M. Misslinger, et al.   BBA - Molecular Cell Research 1868 (2021) 118885

11

https://www.ncbi.nlm.nih.gov/protein/EPB84775.1?report=genbank&log=protalign&blast_rank=1&RID=9XVNA29V01R


unspectacular, their biosynthesis is, and the functions enabled by Fe-S 
clusters are plentiful. The production of Fe-S clusters can be roughly 
subdivided into two parts, the mitochondrial iron‑sulfur cluster ma-
chinery (ISC), consisting of [2Fe-2S] cluster biosynthesis (core ISC) and 
build on [4Fe-4S] cluster biosynthesis (late ISC) machinery, and the 
[4Fe-4S] cluster producing cytosolic iron‑sulfur cluster assembly (CIA), 
which depends on an exported product of the core ISC. 

Fe-S cluster biosynthesis starts with the import of iron into mi-
tochondria, in S. cerevisiae by the paralogous transporters Mrs3/4; A. 
fumigatus employs a single homolog, termed MrsA [160,161]. Subse-
quently, iron and sulfur, which is provided by desulfuration of cysteine, 
are complexed to a [2Fe-2S] cluster via a complex cascade of enzymes 
and chaperones [162]. This pathway provides the precursor for mi-
tochondrial [4Fe-4S] cluster generation, but also for CIA via a com-
pound that is exported into the cytosol by the mitochondrial ABC 
transporter Atm1 and that contains iron and sulfur [163]. Whether this 
compound is already a [2Fe-2S] cluster or a precursor thereof is a 
matter of debate [162,164,165]. The central role of Fe-S cluster bio-
synthesis for cell homeostasis is reflected by the fact that almost all 
genes involved in this pathway are essential. The only exceptions in S. 
cerevisiae are Yfh1 (frataxin), Grx5, and Atm1 [166,167]. The non- 

essentiality of Atm1 is explained by partial substrate redundancy with 
the mitochondrial ABC transporter Mdl1 [168]. The non-essentiality of 
Atm1 has also been reported in S. pombe, F. graminearum, and C. neo-
formans [134,169,170]; the non-essentiality of frataxin has been con-
firmed for S. pombe, C. albicans and C. neoformans [171–173]. The es-
sentiality of the core ISC component Nfs1 and the CIA component 
Nbp35 was recently confirmed in A. fumigatus [174]. 

In mammalian cells, the iron regulatory protein IRP1 senses [4Fe- 
4S] cluster availability, which originates from CIA [175], while IRP2 
was recently discovered to sense indirectly not only iron availability but 
also [2Fe-2S] cluster availability [176], which most likely originates 
from core ISC. In fungi, the crucial role of the core ISC for iron sensing 
has been demonstrated for S. cerevisiae, C. albicans, S. pombe, C. neo-
formans, A. fumigatus, and F. graminearum [134,171,172,174,177,178], 
as deficiency for Mrs3/4, Nfs1, Yfh1, Grx5 or Atm1 caused an iron 
starvation response in the presence of iron. However, dispensability of 
CIA for iron sensing has only been demonstrated in S. cerevisiae and A. 
fumigatus [174,178], which emphasizes the conserved importance of 
mitochondrially produced [2Fe-2S]- rather than cytosolically produced 
[4Fe-4S] clusters for iron sensing in fungal species, particularly as there 
is no indication for de-novo cytosolic [2Fe-2S] cluster biosynthesis 
[22]. 

One of the few [2Fe-2S] cluster coordinating proteins in the cytosol 
of eukaryotes are monothiol glutaredoxins (GRX, non-mitochondrial 
monothiol glutaredoxins), which are homologs of the mitochondrial 
Grx5 that is involved in [2Fe-2S] biosynthesis [179]. S. cerevisiae pos-
sesses two paralogs of GRX, namely Grx3 and Grx4. The [2Fe-2S] 
cluster is coordinated by four sulfur moieties originating from two 
glutathiones (GSH) and two monothiol glutaredoxins [180]. The sulfur 
group of GRX is the cysteine residue within the highly conserved CGFS 
motif. Grx3/4 has been shown to be crucial as [2Fe-2S] cluster cha-
perone for the assembly of cytosolic Fe-S proteins [181–183]. Recently, 
several studies indicated that GRX from plants, mammals, and yeast are 
important for cytosolic [4Fe-4S] cluster biosynthesis, i.e., they link core 
ISC with CIA [162,184–186]. In line, the single GRX of A. fumigatus, 
termed GrxD, was found to physically interact with components of the 
CIA machinery [187]. In S. cerevisiae, lack of both GRX homologs is 
lethal depending on the genetic background [182]. Similarly, lack of 
GRX is lethal in A. fumigatus and C. neoformans [187,188], while S. 
pombe mutants lacking the GrxD homolog are viable only under mi-
croaerophilic conditions [189]. In contrast, GRXs are not essential in F. 
graminearum and C. albicans [134,190]. In all fungal species analyzed, 
GRXs are additionally involved in iron sensing (see below). As partner 
of both Grx5 and GRX, GSH is required for coordination of [2Fe-2S] 
clusters [191]. Therefore, GSH is required for ISC and CIA and conse-
quently also iron sensing. 

Taken together, iron sensing in A. fumigatus has been linked to 
MrsA-mediated mitochondrial iron import, core ISC, GSH, and GrxD 
[174,187]. Moreover, extreme sulfur starvation via inactivation of the 
transcriptional activator of sulfate assimilation, MetR, renders A. fu-
migatus iron-blind due to derepression of high-affinity iron acquisition 
even in the presence of iron [192]. The most likely explanation is de-
fective iron sensing due to the requirement of sulfur for [2Fe-2S] cluster 
biosynthesis and/or glutathione (Fig. 6C). 

7.1. Iron sensing by transcription factors 

A common theme in fungal iron homeostasis is the sensing of the 
cellular iron status via [2Fe-2S] cluster abundance by iron-regulatory 
transcription factors in concert with GRX. Besides GRX, a second [2Fe- 
2S] cluster chaperone, termed Bol2 (also termed Fra2) is involved in 
iron sensing by some transcription factors. However, there are sig-
nificant mechanistic differences in iron sensing between species despite 
the use of similar components. Fungal iron sensing has recently been 
comprehensively reviewed by Gupta and Outten [193]. Iron sensing is 
best understood in S. cerevisiae, S. pombe, and A. fumigatus, which will 

Fig. 7. Schematic overview of iron sensing and regulatory mechanisms in S. 
cerevisiae, S. pombe, and A. fumigatus with a focus on the role of GRX. In all three 
species, GRX is essential for iron sensing, however with different roles. For S. 
cerevisiae Aft1/2 and S. pombe Php4 GRX it is important for [2Fe-2S] cluster 
transfer (sensing iron availability), while S. cerevisiae Yap5, S. pombe Fep1, A. 
fumigatus SreA, and A. fumigatus HapX appear to recognize [2Fe-2S] clusters 
independent of GRX. For S. pombe Fep1, A. fumigatus SreA, and A. fumigatus 
HapX, and potentially S. cerevisiae Yap5, GRX is crucial for sensing iron star-
vation (potentially [2Fe-2S] cluster removal from transcription factors). 
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be compared in the following section (Fig. 7). 
During iron starvation (low [2Fe-2S] cluster abundance), S. cerevi-

siae Aft1/2 binds to DNA to activate iron acquisition and iron sparing 
via Cth1/2. During iron availability (high [2Fe-2S] cluster abundance), 
a heterocomplex consisting of one GRX, one Bol2, and one glutathione 
transport [2Fe-2S] clusters to Aft1/2, which promotes DNA dissocia-
tion, dimerization, and nuclear export [181,194–196]. [2Fe-2S] cluster 
recognition by Aft1/2 depends on a conserved Cys-Asp-Cys (CDC) motif 
located C-terminal of the DNA-binding domain [181,197]; replacement 
of one or both cysteine residues renders Aft1/2 constitutively active 
[198]. Importantly, Aft1/2 coordinates a [2Fe-2S] in cooperation with 
Grx3/4 and Bol2. Also the activity of Yap5, which orchestrates the re-
sponse to iron excess is regulated by [2Fe-2S] recognition. However, in 
contrast to Aft1/2, [2Fe-2S] cluster binding activates Yap5 by inducing 
a conformational change. Yap5 dimers bind [2Fe-2S] clusters in vitro via 
two CRR [199]. One of these CRR, CGFCX5CXC, is well conserved 
among fungal Yap5 and HapX orthologs and activity of Yap5 depends 
mainly on this CRR (Fig. 5). Interestingly, the N-terminal CGFC motif of 
this CRR is reminiscent of the Grx3/4 [2Fe-2S] cluster binding site 
(CGFS) in Grx3/4 homologs. In contrast to Aft1/2, [2Fe-2S] cluster 
transfer to Yap5 appears to be independent of Grx3/4 and [2Fe-2S] 
cluster coordination by Yap5 appears to be independent of other pro-
teins. Taken together, lack of Grx3/4 causes constitutive activation of 
Aft1/2, i.e., iron acquisition independent of iron availability (Fig. 7). 
The role of Grx3/4 in activity of Yap5 has not been studied, but due to 
the homology to A. fumigatus HapX (see below) it appears likely that 
lack of Grx3/4 results in constitutive activation of Yap5 (Fig. 7). As a 
result, apart from its function in Fe-S cluster biosynthesis, lack of Grx3/ 
4 causes iron-regulatory defects during iron sufficiency. 

In S. pombe, Php4 represses iron-consuming pathways unless the 
availability of iron is signaled. Iron availability is sensed by GRX, which 
inactivates Php4 function through bridging a [2Fe-2S] cluster with 
Php4 involving two cysteine residues within Php4 [200]. Repression of 
iron acquisition during iron availability by Fep1 depends on [2Fe-2S] 
cluster coordination via a conserved CRR [201–203] which appears to 
be independent of other proteins including Grx4 [204]. However, the 
inactivation of Fep1 under iron starvation depends on GRX (Grx4) and 
Bol2; the simplest explanation would be that these two proteins remove 
the [2Fe-2S] cluster from Fep1 to inactivate this transcription factor 
[189]. In summary, lack of Grx4 causes constitutive activation of both 
Php4 and Fep1 (Fig. 7), i.e., constitutive repression of iron consumption 
[205] with constitutive repression of iron acquisition [206]. Conse-
quently, with respect to iron homeostasis, lack of Grx4 causes iron- 
regulatory defects during both iron starvation and sufficiency. 

In A. fumigatus, HapX represses iron consuming pathways. During 
iron excess, HapX is assumed to coordinate [2Fe-2S] clusters, most 
likely independent of other proteins including GRX (GrxD), which 
transforms HapX into an activator of iron consuming pathways and iron 
detoxification [187]. In vivo, the latter function has been shown to 
depend on two CRR, whereby the major role is played by CGFCX5CXC 
motif that is conserved in S. cerevisiae Yap5 [105]. Repression of iron 
acquisition during iron availability by SreA is assumed to depend on 
[2Fe-2S] cluster coordination via a conserved CRR (Fig. 4) in a GrxD 
independent manner similar to the homologous S. pombe Fep1. During 
iron starvation, GrxD appears to mediate [2Fe-2S] cluster removal of 
both SreA and HapX to inactivate SreA and to convert HapX from the 
“iron excess-” into the “iron starvation function” [187]. In contrast to S. 
pombe, [2Fe-2S] cluster removal from transcription factors appears to 
be independent of BolA as both BolA-like proteins of A. fumigatus pos-
sess mitrochondrial targeting sequences; however, a dual localization 
cannot be excluded [187]. Taken together, lack of GrxD locks HapX and 
SreA in the “iron form” (Fig. 7), i.e., constitutive derepression of iron 
consumption paired with constitutive repression of iron acquisition. 
Consequently, lack of Grx4 causes iron-regulatory defects exclusively 
during iron starvation. 

In summary, GRXs are involved in iron sensing by all discussed 

transcription factors. However, for Aft1/2 and Php4 GRX is involved in 
[2Fe-2S] cluster trafficking and coordination together with the tran-
scription factors. In contrast, for SreA/Fep1- and Yap5/HapX-type 
transcription factors, GRX appears to be required for [2Fe-2S] cluster 
removal. Alternative to [2Fe-2S] cluster removal, GRX might modify 
the coordination environment of [2Fe-2S] clusters to signal iron star-
vation. BolA proteins have been shown to be involved in iron sensing by 
Aft1/2 and Fep1, while Yap5 and Php4 act independently of this Fe-S 
chaperone [193]. 

8. DNA recognition mode of HapX and homologous transcription 
factors 

Heterotrimeric CBCs (transcriptional regulators of the HAP/NF-Y 
family) consist of three subunits, initially identified as Hap2/Hap3/ 
Hap5 in yeast and as NF-YA/B/C in mammals and later as HapB/HapC/ 
HapE in A. nidulans and A. fumigatus. While heterotrimeric CBCs are 
found in all eukaryotes, an additional fourth regulatory subunit of this 
core complex is present only in the fungal kingdom of life [118]. The 
prototype of this subunit, Hap4, was found first in S. cerevisiae as the 
transcriptional activator and global regulator of respiratory gene ex-
pression [207]. Recently, Hap4 was shown to be posttranslationally 
regulated by heme [208]. In line with the observation that fungal Hap5 
homologs feature a conserved domain that is important for recruitment 
of Hap4 into the Hap2/3/5 complex, Hap4-like proteins were identified 
subsequently in most fungal species, however with diverging functions. 
According to the current state of knowledge, Hap4 requires the pre-
sence of CCAAT-containing DNA for formation of a stable Hap2/3/5/4 
tetrameric complex, but the question of why the interaction of Hap4 
with the Hap2/3/5 complex requires DNA-binding as a prerequisite 
remains unaddressed [209]. 

Hap4-like iron-sensing transcription factors of the HapX-type share 
only a small 16 amino acid (aa) stretch with Hap4 (termed Hap4-like 
domain), an indispensable part of Hap4 for association with the core 
Hap2/3/5 complex (Fig. 5). The incorporation of a Yeast activator 
protein 1 (Yap1) like basic region leucine zipper (bZIP)-type DNA- 
binding domain, which is C-terminal relative to its Hap4-like CBC- 
binding domain, represents a structural hallmark of all HapX-type 
regulators. This leads to the question of how HapX recognizes its target 
DNA sites. Initial studies in A. nidulans indicated that a HapX homo-
dimer binds promoter sites cooperatively with the CBC. The conserved 
core CBC covers and bends a DNA double strand of 23 base pairs (bp) in 
length [210] and escorts HapX to the 3′-end of CBC covered DNA 
comprising the respective CBC consensus motif 5′-CCAAT-3′ (Fig. 8A; 
[211]). This multi-protein recognition mode is mediated via protein- 
protein interaction between the Hap4-like domain of HapX and the 
HapX recruitment domain present in the CBC subunit HapE [107]. 

A recent study in A. fumigatus revealed the mode of discrimination 
between the around 100 genome-wide promoter sites recognized co-
operatively by the CBC:HapX complex and the about 2500 target sites 
bound solely by the CBC. Intriguingly, HapX and the CBC exert an ex-
tremely flexible, but evolutionary conserved promoter-specific DNA 
recognition [106]. The minimal common bipartite CBC:HapX consensus 
DNA-binding motif 5′-CSAAT-N12-RWT-3′ comprises the pentameric 5′- 
C(C/G)AAT-3′ core sequence (recognized by the CBC) and a small 3 bp 
A/T-rich sequence motif (bound by HapX) with a fixed distance of 
12 bp between both submotifs. In addition, a second HapX binding site 
consisting of single, or less frequently, overlapping 5′-TKAN-3′ motifs is 
located downstream of the 5′-CSAAT-3′ sequence, however with high 
variability regarding its position (11 to 23 bp downstream), but with 
clear orientation and spacing preferences (Fig. 8B, C). The 5′-TKAN-3′ 
motifs represent half-sites which, as overlapping half sites, are generally 
preferred targets of Yap1-type (Yap1, Gcn4) bZIP homodimers. Thus, 
the astonishing plasticity of HapX DNA recognition in cooperation with 
the CBC cannot be explained with the well-defined bZIP core DNA 
binding sites (5′-TTACTAA-3′ and 5′-TGACTCA-3′). However, 
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transcriptional regulation often involves the assembly of multi-protein 
complexes on DNA and it has been reviewed that such complexes can 
exhibit novel DNA-binding specificities not predictable from those of 
the single transcription factors [212]. 

As mentioned above, S. cerevisiae and C. glabrata Yap5 and HapX 
have the same function in protecting the cell from toxic iron effects. 
Moreover, they share conserved domains: the bZIP domain and a ru-
dimentary Hap4-like domain [151] and it was shown that CgYap5 re-
quires the CBC for regulating its targets [213]. However, the DNA re-
cognition modes of HapX and CgYap5/ScYap5 are obviously different. 
In contrast to Hap4, Php4 and HapX-type regulators, CgYap5/ScYap5 
lack the C-terminal pentapeptide of the canonical Hap4-like domain 
(47KPGRK51 in HapX, Fig. 5B). Nevertheless, CBC interaction of the 
truncated 11 aa Hap4-like domain of CgYap5 (32ISKKWKLPPLR42) and 
cooperative binding to CCAAT and Yap response element (YRE) motifs ( 
5′-TTACTAA-3′) spaced by 10–14 bp is sufficient to establish 
CBC:Yap5:DNA interaction [213,214]. Similar to Hap4 from S. cerevi-
siae and C. glabrata, S. pombe Php4 lacks the bZIP basic region for DNA 
binding, again displaying a different mode of DNA recognition. 

Recent advances in elucidation of the HapX and Yap5 DNA binding 
modes shed new light on their DNA recognition modes and may suggest 
that the canonical 16 aa spanning Hap4-like domains of HapX- and 
Hap4-type transcription factors not only mediate CBC protein-protein 
interaction, but also have an intrinsic DNA-binding propensity for DNA 
target site discrimination. Several lines of evidence are in line with this 
scenario. First, HapX cooperates with the CBC to bind two different 
DNA motifs (a least one bZIP half-site and a short A/T-rich sequence). 

Second, A. fumigatus HapX bZIP-domain loss of function mutants re-
tained a residual regulatory potential for activation of target genes 
under conditions of iron starvation (sidG) and overload (cccA). Third, 
the degenerated Hap4-like domain of CgYap5 was unable to function-
ally replace the canonical one of HapX. Fourth, the CBC in C. glabrata 
has a dual role. It is involved in iron detoxification (cooperatively with 
Yap5) as well as in activation of respiratory genes in cooperation with 
Hap4. An intrinsic DNA-binding propensity of CgHap4 would be a lo-
gical explanation for the discrimination of CBC:Yap5 and CBC:Hap4 
target promoter sites. And finally, direct DNA contact of Hap4, which 
means cooperative promoter recognition with the CBC, would explain 
that Hap4 requires the presence of CCAAT-containing DNA for forma-
tion of a stable complex with Hap2/3/5 in S. cerevisiae. 

9. The role of iron and siderophores in biotic interactions 

Iron is an essential trace element for both pathogens and their hosts. 
Consequently, hosts contain iron. Nevertheless, pathogens typically 
encounter iron limitation during infection because the host iron is ty-
pically tightly sequestered by proteins. In mammalian hosts, the ma-
jority of iron is found as heme in hemoglobin, as ferric iron in the in-
tracellular iron storage protein ferritin, as ferric iron in the iron- 
transporting serum protein transferrin and in enzymes as Fe-S clusters 
and heme. Furthermore, innate immunity effectively increases restric-
tion of iron availability to fight infections, termed “nutritional im-
munity”, leading to anemia of inflammation [215,216]. Consequently, 
pathogens evolved strategies to “steal” the iron from their hosts. Thus, 

Fig. 8. Proposed model for cooperative CBC:HapX DNA recognition based on the binary CBC:DNA structure and genome-wide ChIP-seq analyses. (A) The CBC with 
its two histone-like subunits HapC and HapE as well as the sequence-specific HapB subunit recognizes the CCAAT pentanucleotide by inserting the C-terminal anchor 
helix of HapB into the minor groove and DNA-bending in a nucleosome-like manner. (B) The minimal common CBC:HapX consensus DNA-binding motif has the 
bipartite structure 5′-CSAAT-N12-RWT-3′ but is not sufficient for tight and specific interaction. HapX high-affinity binding requires additional bZIP half-sites (5′- 
TKAN-3′, indicated by green triangles), which are located preferably 14 or 20 bp downstream of the CSAAT consensus motif either on the same or the opposite strand 
relative to the CCAAT box. How the bZIP domains of a HapX dimer target the DNA in this region and how the Hap4-like CBC-binding domain of HapX (not shown in 
the figure) interacts with the HapX recruitment domain of the CBC subunit HapE has to be clarified. (C) Phylogenetically conserved CBC:HapX target motifs in the 
cccA and sreA promoter regions from 20 Aspergillus spp. reflecting the promoter specificity of CBC:HapX complex binding and lack of HapX regulon-wide similarity in 
the region downstream of the 5′-RWT-3′ motif. 
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competition for iron is a critical battleground that determines the 
outcome of the host-pathogen relationship. Therefore, it is not sur-
prising that iron overload due to frequent blood transfusions, in-
effective erythropoiesis and/or defects in iron metabolism decreases 
resistance against infection including invasive aspergillosis [217]. For 
example, microhemorrhage-associated tissue iron enhances the risk for 
A. fumigatus invasion in a murine model of airway transplantation 
[218]. In healthy individuals, plasma iron accessible for cells is bound 
to the iron transporting protein transferrin, whereby transferrin is ty-
pically only about 30% iron-saturated, i.e., serum transferrin has a high 
capacity to scavenge free iron. However, pathologic iron excess con-
ditions can exceed the binding capacity of transferrin leading to non- 
transferrin bound iron (NTBI), also termed enhanced labile plasma iron 
(eLPI). Recently, eLPI was found to stimulate the in vitro growth of A. 
fumigatus in serum from hematopoietic stem cell transplanted patients 
[219]. The growth stimulation by eLPI could be neutralized by apo- 
transferrin (iron-free transferrin) and the therapeutically used iron 
chelator deferasirox but not by the therapeutically used iron chelator 
deferiprone. These results underline the importance of iron sequestra-
tion by the host and might open treatment options. In line, by in-
dependent studies deferasirox has been shown to have an activity 
against A. fumigatus in vitro and in vivo models [217,220]. However, 
application of deferasirox for mucormycosis in mice and humans 
yielded inconsistent outcomes with adverse events in humans, so that 
these data must be interpreted with caution [221]. 

The importance of siderophores in virulence of bacteria has been 
recognized early, e.g., in 1979, Williams [222] demonstrated the crucial 
role of the ferrichrome-type siderophore aerobactin in virulence of in-
vasive E. coli strains using genetic techniques. About 10 years later, an 
association between the occurrence of infection with Mucoromycota 
species in dialysis patients and the use of deferoxamine treatment 
against aluminum overload and/or iron excess was reported; a link that 
could be confirmed in animal models [223]. Later on, deferoxamine 
was shown to serve as xenosiderophore for these species [224]. Char-
acterization of the genetics of fungal siderophore biosynthesis began in 
the maize pathogen U. maydis, when in 1993 siderophore biosynthesis 
was shown to be dispensable for virulence of this maize pathogen 
[225]. This finding generally diminished the interest in fungal side-
rophore metabolism, which changed significantly, when siderophore 
biosynthesis was found to be essential for virulence of A. fumigatus in 
murine models for invasive aspergillosis in 2004 [32]. Notably, also 
intracellular siderophore biosynthesis was found to be crucial for 
virulence as shown initially in A. fumigatus [100], which underlines its 
role in germination and intracellular iron handling. In contrast, RIA was 
found to be dispensable for virulence of A. fumigatus. Nevertheless, RIA 
might play a role in virulence as lack of exclusively extracellular or 
intracellular siderophore caused only attenuation of virulence [100]. 
Subsequently, siderophore biosynthesis was also found to be crucial for 
virulence of several plant pathogenic species such as F. graminearum, C. 
heterostrophus, Cochliobolus miyabeanus, A. alternata, and Alternaria 
brassicicola, which employ SIA for full virulence [226–229]. These 
fungal species are necrotrophs, i.e., they rapidly kill plant tissue after 
invasion to live saprobically on the dead remains; a virulence style si-
milar to most fungal animal/human pathogens. In contrast, U. maydis is 
a biotrophic pathogen that establishes a long-term feeding relationship 
with its hosts without causing immediate damage. Hemibiotrophs have 
a short initial biotrophic phase followed by a necrotrophic phase. In the 
hemibiotrophic plant pathogen Colletotrichum graminicola, the side-
rophore system was found to be repressed during biotrophic- and ac-
tivated during necrotrophic growth [230]; in agreement, both SIA and 
RIA were found to be crucial for virulence of this pathogen. This and 
other studies indicated that the presence of siderophores modulates the 
plant immune response and that downregulation of siderophore bio-
synthesis serves to evade the plant immune response stimulation to 
maintain biotrophy [231–233]. In agreement, exclusively RIA was 
shown to be important for virulence of the biotrophic plant pathogens 

U. maydis and Microbotryum violaceum [234,235]. In pathogenic fungal 
species lacking endogenous siderophore production such as C. albicans 
and C. neoformans, RIA and heme-mediated iron acquisition were found 
to be crucial for virulence [236–238]. In C. albicans, the adhesin and 
invasin Als3, was shown to mediate iron scavenging from host ferritin 
via RIA [239]. In Mucor circinelloides, ferroxidases representing RIA 
were shown to be crucial for virulence [240], while the role of the 
carboxylate-type siderophore rhizoferrin in virulence of Mucoromycota 
remains unresolved. A unique predisposition for mucormycosis is dia-
betic ketoacidosis, which lowers the ability of host transferrin to chelate 
iron. The non-transferrin bound iron together with the elevated glucose 
level enhances fungal growth and attenuates host defense mechanisms 
[241]. The role of iron acquisition systems in virulence of different 
fungal species is summarized in Table 3. 

The importance of SIA and iron homeostasis for virulence of A. fu-
migatus is underlined by the fact that metabolic pathways, which are 
not exclusively required for SIA or iron homeostasis, are crucial for 
virulence of A. fumigatus including mitochondrial production of the 
siderophore precursor ornithine [129], leucine biosynthetic enzymes 
that control posttranslational activation of LeuB and consequently af-
fect iron regulation (Fig. 6B; [127]), biosynthesis of riboflavin that is 
essential for the first step of siderophore biosynthesis (SidA; Fig. 3; 
[242]), and biosynthesis of pantothenic acid that is essential for post-
translational activation of the siderophore biosynthetic NRPS (SidD and 
SidC; Fig. 3; [242]). 

Besides iron acquisition, transcriptional adaptation to iron starva-
tion; i.e., activation of iron acquisition and downregulation of iron 
consumption has been demonstrated to be crucial for virulence of an-
imal and plant pathogenic fungal species as lack of HapX/Hap43 was 
proven to attenuate virulence of several species including A. fumigatus 
as summarized in Table 3. 

Fungal iron homeostasis has also been shown to be crucial for 
symbiotic interactions, e.g., impairment of extracellular siderophore 
biosynthesis or SreA resulted in perturbation of the mutualistic inter-
action of the endophyte E. festucae and its perennial ryegrass host 
[110,243]. Moreover, the SreA homolog Sfu1 has been shown to be 
dispensable for virulence but required to promote gastrointestinal 
commensalism [142]. The role of conserved components involved in 
iron acquisition and regulation of different fungal species is summar-
ized in Table 3. 

The battle for iron significantly impacts also the interaction of mi-
croorganisms leading to beneficial and antagonistic relationships. The 
interplay between A. fumigatus and the bacterium Pseudomonas aerugi-
nosa is of particular interest as these two opportunistic pathogens fre-
quently co-infect the airways of cystic fibrosis patients. Interestingly, P. 
aeruginosa can iron-starve A. fumigatus via secretion of the iron-che-
lating 1-hydroxyphenazine [244] and iron sequestration by its major 
siderophore pyoverdine, which cannot be utilized as xenosiderophore 
by A. fumigatus [245]. In this competition for iron, siderophore pro-
duction by A. fumigatus plays an important role in protection against P. 
aeruginosa [246]. The importance of the use of xenosiderophores for 
saving energy or avoiding competition is underlined by the fact that 
many bacteria possess specific transporters for utilization of ferri-
chrome- and coprogen-type siderophores, which are produced ex-
clusively by fungal species, e.g., E. coli FhuA and FhuE [247,248]. 
Moreover, some diatoms can use siderophore-bound iron via en-
docytosis exhibiting a species-specific recognition for siderophore types 
[249]. Furthermore, there are natural siderophore-auxotrophic fungal 
species. In addition to the previously mentioned mucoromycete Pilo-
bolus spp., that requires coprogen or ferrichrome as growth factor [43], 
the ascomycete Debaryomyces mycophilus, that lives as endosymbiont in 
the guts of woodlice, and the basidiomycete Tritirachium egenum, a 
mycosymbiont identified to grow in association with Penicillium rugu-
losum, were found to lack independent high-affinity iron acquisition 
and to depend on xenosiderophore supply [250,251]. 
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10. Translational aspects of the fungal siderophore system 

The use of siderophores distinguishes fungal from plant and mam-
malian cells, which might enable translational applications. Invasive 
fungal infections such as aspergillosis are rather rare but nevertheless 
life-threatening [13]. The diagnosis of fungal infections is difficult, 
lacking specificity and sensitivity. Recently, TAFC was reported to be an 
attractive novel biomarker for systemic A. fumigatus infection enabling 
non-invasive diagnosis in urine [252,253]. Furthermore, replacing iron 
in siderophores such as TAFC by the radionuclides gallium-68 allowed 
in vivo imaging of A. fumigatus infection by positron emission tomo-
graphy (PET) due to specific uptake and accumulation of the side-
rophore in fungal cells. However, this approach is so far limited to 
preclinical models of pulmonary infection in mouse and rat [73,254]. 
Moreover, the conjugation of siderophores and fluorescent dyes en-
abled the generation of hybrid imaging compounds, allowing the 
combination of PET and optical imaging in preclinical aspergillosis 
models [255]. The latter indicated that SITs tolerate substantial deri-
vatization of their substrate. This is particularly interesting as SITs re-
present one of few protein families that are unique to the fungal 
kingdom, i.e., they are not present in prokaryotes or other eukaryotes. 
Consequently, this protein might allow fungal-specific drug delivery by 
a Trojan horse approach [256], in which toxic compounds are con-
jugated to siderophores for selective import into fungal cells. Com-
paratively, there are natural antibacterial siderophore-antibiotic con-
jugates, termed sideromycins, and recently the first synthetic 
siderophore-antibiotic conjugate, cefiderocol, was FDA-approved to 
combat multidrug-resistant gram-negative bacteria [257]. Notably, the 
novel antifungal drug VL-2397 (previously termed ASP2397), which 
has a ferrichrome-type structure containing aluminum instead of iron, 
was recently shown to require the SIT Sit1 for uptake and activity 
against A. fumigatus (Fig. 1; [258]). Due to its crucial role in virulence, 
the siderophore biosynthetic pathway represents a promising target for 
selective therapeutic intervention. In this respect noteworthy, celastrol, 

a natural quinone methide, was identified as a noncompetitive inhibitor 
of SidA [259]. Moreover, treatment of fungal keratitis in a murine 
model by dual topical therapy with the iron chelator deferiprone and 
statins, which target biosynthesis of isoprenoids and extracellular 
siderophores (Fig. 2B), showed restriction of fungal growth [260]. 

11. Conclusion 

During the past decades, it has become clear that siderophore me-
tabolism is a central constituent of iron handling and consequently 
virulence in numerous but not all pathogenic fungi. Recent work in 
various pathogenic fungi revealed a high plasticity in iron sensing 
mechanisms by different transcription factors and associated proteins. 
However, sensing of mitochondrial Fe-S cluster productivity was iden-
tified to be a common feature in all investigated species. Moreover, the 
conserved role of GRX with a conserved CGFS motif has become evi-
dent. In the present understanding, GRXs are required for trafficking 
and/or modulating Fe-S cluster signal to determine the activity of iron- 
responsive transcription factors. However, the detailed mechanism of 
how GRXs affect distinct transcription factors can be variable. These 
mechanistic differences in GRX-mediated iron sensing might reflect 
unique features of the respective transcription factor, e.g., some species 
employ repressors where others use activators. In this context, HapX 
homologs, which have both a repressing function under iron starvation 
and an activating function under iron excess, are of special interest. The 
recent characterization of the mode of target promoter recognition of 
the CBC:HapX complex revealed astonishing complexity. 

In summary, knowledge about fungal iron homeostasis in patho-
genic fungi might be of importance to improve diagnosis of fungal in-
fections and to develop antifungal strategies in agriculture and clinics. 
Since pathogens encounter iron-limited conditions during infection, 
perturbation of these fine-tuned systems could potentially be exploited 
for novel antifungal treatments due to significant mechanistic differ-
ences to the iron homeostasis-maintaining machinery in host cells. 

Table 3 
Examples of the role of iron uptake and regulation in virulence, symbiosis, and commensalism. Requirement for full virulence is denoted by +, in case of siderophore 
biosynthesis (SB) by T+ for total, E+ for extracellular, or I+ for intracellular siderophore biosynthesis; proven dispensability for virulence is denoted by −; for RIA, 
(−) denotes that inactivation did not cause a virulence defect but that an assisting role cannot be excluded.          

Species Host HapX homologs SreA homologs RIA SB Heme uptake References  

Virulence in animal host 
Candida albicans Mouse +  +  + [236,237,268] 
Aspergillus fumigatus Mouse, insect + − (−) T+, E+,I+  [32,100,269,270] 
Histoplasma capsulatum Mouse    T+  [271] 
Cryptococcus neoformans Mouse + + +   [159,238] 
Metarhizium robertsii Insect  −  E-,I+  [272]  

Virulence in animal host and necrotrophic plant virulence 
Fusarium oxysporum Tomato, mouse +     [49]  

Necrotrophic plant virulence 
Fusarium graminearum Wheat   (−) T+, E+  [226,228] 
Cochliobolus heterostrophus Maize   + T+, E+, I+  [228,263,273] 
Cochliobolus miyabeanus Rice    E+  [228] 
Alternaria brassicicola Arabidopsis thaliana    E+  [228] 
Verticillium dahliae Smoke tree +     [117] 
Magnaporthe grisea Rice    I+  [274]  

Biotrophic plant virulence 
Ustilago maydis Maize   + T-  [225,234] 
Microbotyum violaceum     T-  [235]  

Hemibiotrophic plant virulence 
Colletotrichum graminicola Maize   + T+, E+  [230,275]  

Symbiosis 
Epichloë festucae Perennial ryegrass  +  E+  [110,243]  

Commensal fitness 
C. albicans Mouse  +    [142]    
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